首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A dielectric barrier discharge (DBD) plasma, operating in air at atmospheric pressure, has been used to induce changes in the surface properties of poly(methylmethacrylate) (PMMA) films. The relative effects that key DBD operating parameters, specifically: discharge power, electrode gap and duration of exposure have on producing chemical and microstructural changes in the polymer surface region have been investigated. The approach taken involves the application of an orthogonal array experimental design and statistical analysis methodology. The various data sets obtained from these analyses have been used to develop an equation in which induced changes in the surface properties of the DBD modified PMMA films are expressed in terms of the effectiveness of the various processing parameters in producing them.In general, the results obtained clearly indicate that DBD plasma processing is an effective method for the controlled surface modification of PMMA. Relatively short exposures to the atmospheric pressure discharge produces a significant amount of oxygen incorporation at the surface as indicted by a pronounced reduction in water contact angle. Analysis of the role of each of the operating parameters concerned shows that they do indeed have selective effectiveness for inducing resultant surface modification. Duration of exposure to the DBD plasma, expressed here as the number of treatment cycles at a given speed of specimen transit through the electrode gap, was found to play a major role in decreasing the surface wettability of PMMA. Conversely, the magnitude of the discharge power was not a significant parameter in this regard. In contrast, the value of the applied power played the dominant role in achieving the observed enrichment of the surface oxygen abundance, as measured by XPS, with the duration of exposure to the discharge playing a secondary role in this case.The nature and scale of the induced surface changes that originate from the various processing conditions employed have been further considered to determine if an interrelationship exists between them. Non-parametric data analysis indicates that no significant correlation exists between the observed changes in measured polymer wettability and the attendant surface oxygen enrichment. This result suggests that the increase in surface wettability caused by DBD processing, as manifested in a reduced contact angle, is not merely attributable to changes in the surface chemistry. As such, it is postulated that changes in the surface microstructure may also contribute to this change in surface wettability.  相似文献   

2.
庄越  刘峰  储海靖  方志 《强激光与粒子束》2021,33(6):065017-1-065017-9
为了提高等离子体对聚合物材料表面处理的应用效果,优化亲水处理的条件,研究了交流和纳秒脉冲氩气介质阻挡放电(DBD)中添加适量H2O,对聚丙烯(PP)亲水改性的处理效果。利用电学和光学诊断方法,系统地对比了交流DBD和纳秒脉冲DBD的放电特性,结果表明,纳秒电源驱动DBD具有更高的放电瞬时功率,更好的放电均匀性和更高的能量效率。通过测量不同水蒸气含量下DBD的OH发射光谱强度,确定了PP材料亲水性处理中H2O添加的最优含量。利用交流和纳秒脉冲电源驱动DBD分别对PP材料进行亲水改性的处理,测量了不同条件下改性处理后的表面水接触角,并利用原子力显微镜(AFM)和傅里叶红外光谱(FTIR)分别对处理前后PP材料的表面物理形貌和表面化学成分进行分析。结果发现,经DBD处理后PP材料的水接触角明显降低,表面粗糙度明显增大,表面的亲水性含氧基团,羟基(?OH)和羰基(C=O)的数量大幅增加。相比交流电源,纳秒脉冲DBD处理的改性效果更好,其处理后的材料表面水接触角,比交流DBD处理的低5°左右,表面粗糙度也有所提升。而水蒸气的加入可使PP材料的表面水接触角进一步减小4°左右,表面粗糙度明显提升。研究结果为优化DBD聚合物材料表面改性实验条件及处理的效果提供了重要的参考依据。  相似文献   

3.
The surface properties of a granular activated carbon (GAC) were modified by dielectric barrier discharge (DBD) plasma to enhance its adsorption capacity to pentachlorophenol (PCP). Surface characteristics and adsorption capacity of GAC before and after DBD plasma modification were investigated. Results showed that the surface of GAC after plasma modification, especially N2 plasma, became smoother and the particulates on virgin GAC's surface were eliminated due to deposit effect of plasma. The N2 plasma modification reduced the specific surface area and surface oxygen-containing functional groups of GAC. In contrast, O2 plasma modification increased the specific surface area and introduced oxygen-containing groups.  相似文献   

4.
Two types of dielectric barrier discharges (DBDs), volume DBD (called Industrial Corona) and coplanar DBD, were used for low temperature (70 °C) atmospheric pressure plasma mineralization of mesoporous methyl‐silica/titanium dioxide nanocomposite photoanodes. The photoanodes with a thickness of approx. 300 nm were inkjet‐printed on flexible polyethylene terephthalate (PET) foils. Plasma treatments of both DBDs led to changes in the chemical stoichiometry and morphology of the mesoporous photoanodes, resulting in a significant increase of the work function from approx. 4.0 to 4.3 eV and 4.8 eV, after plasma mineralization with volume DBD and coplanar DBD, respectively. We also studied the effect of plasma mineralization on the photoelectrochemical properties of the flexible mesoporous TiO2 photoanodes. Plasma mineralization with volume DBD and coplanar DBD showed different effects on the generated photocurrent in the photoanodes. Although the plasma mineralization with volume DBD showed only a minor effect on the photocurrent, plasma mineralization with coplanar DBD led to significantly higher photocurrents. We found that the enhancement of the photoelectrochemical properties was related to the homogeneity of the plasma‐treated surfaces—arising from different spatial properties of the plasma between volume and coplanar DBDs. Furthermore, the results showed that plasma mineralization using coplanar DBD can effectively change the energy levels of the surface. This resulted in the enhancement of the work function and the photoelectrochemical properties of the mesoporous TiO2 photoanodes. This contribution shows that coplanar arrangement of electrodes in DBDs generates plasma of higher efficacy compared with standard volume DBD that is currently often used in industrial processes.  相似文献   

5.
In order to study the influence of plasma on electrode, atmospheric pressure dielectric barrier discharge (DBD) air plasma is employed here to treat copper electrode surface. Plasma is generated between the parallel plate electrodes by means of high voltage produced by a high-frequency power supply with transformer. Electrode surface alterations induced by air plasma are investigated by using field emission scanning electron microscope (FE-SEM), X-ray energy dispersion spectroscopy (EDS) and contact angle measurement. The results show that DBD air plasma removes the organic contaminant on surface and causes electrode surface roughness, oxidization and nitridation. In addition, surface wettability is also improved, as concluded from contact angle measurements.  相似文献   

6.
胡文娟  谢芬艳  陈强  翁静 《中国物理 B》2009,18(3):1276-1282
With monomer allylamine, amine-containing functional films were prepared in alternative current pulsed dielectric barrier discharge (DBD) at a high pressure. This paper analyses in detail the film properties and structures, such as hydrophilicity, compounds and microstructures as well as amine density by the water contact angle, Fourier transform infrared spectroscopy, atomic force microscopy, and ultraviolet--visible measurement. The influence of discharge parameters, in particular applied power, on amine density was investigated. As an application the cell adsorption behaviours on plasma polymerization films was performed in-vitro. The results show that at a high pressure pulsed DBD plasma can polymerize films with sufficient amine group on surface, through which the very efficient cell adsorption behaviours was demonstrated, and the high rate of cell proliferation was visualized.  相似文献   

7.
A dielectric barrier discharge (DBD) plasma, operating in air at atmospheric pressure, has been used to induce changes in the surface properties of polyethylene terephthalate (PET) films. The effects that the key DBD operating parameters: discharge power, processing speed, processing duration, and electrode configurations, have on producing wettability changes in the PET surface region have been investigated. The approach taken involves the application of an Taguchi experimental design and robust analysis methodology. The various data sets obtained from these analyses have been used to studies the effect of the operating parameters on the surface uniformity and efficiency of the said treatment.In general, the results obtained indicate that DBD plasma processing is an effective method for the controlled surface modification of PET. Relatively short exposures to the atmospheric pressure discharge produces significant wettability changes at the polymer film surface, as indicted by pronounced reductions in the water contact angle measured. It was observed that the wettability of the resultant surface shows no significant differences in respect to orientation parallel (L-direction) or perpendicular (T-direction) to the electrode long axis. However, there was significant differences between the data obtained from these two orientations. Analysis of the role of each of the operating parameters concerned shows that they have a selective effectiveness with respect to resultant surface modification in terms of uniformity of modification and wettability. The number of treatment cycles and the electrode configuration used were found to have the most significant effects on the homogeneity of the resultant PET surface changes in L- and T-orientation, respectively. On the other hand, the applied power showed no significant role in this regard. The number of treatment cycles was found to be the dominant factor (at significance level of 0.05) in respect of water contact angle changes at the processed PET surface in both orientations. The driven metal electrodes (stainless steel or aluminium) were apparently superior to the driven dielectric electrode (ceramic or quartz) configurations. The grounded electrode in each case was a silicon rubber-covered aluminium plate (see later). The nature and scale of the surface changes that originate from the various processing conditions employed have been considered so as to determine the optimum treatment conditions in respect of processing outcomes, properties and any orientation dependence. Thus, it was revealed that higher processing speeds and longer processing durations are key for uniformity along the electrode axial orientation, while lower processing speeds and short exposure durations are key considerations, in the corresponding perpendicular orientation. In general, longer processing durations (low processing speeds and a high number of treatment cycles) and higher plasma powers induced greater changes in the surface wettability of the PET, as demonstrated by the observed water contact angles. This behaviour is taken to indicate that different combinations of DBD operating parameters and electrodes produce discharge conditions that can result in different plasma chemical processes in respect of uniformity, treatment efficiency and orientation dependence.  相似文献   

8.
This is the first report on the generation of trap states and their effective elimination in highly confined CdSe quantum dots in order to obtain enhanced and stable optical properties prepared by aqueous route. Surface plays an important role in optical properties of quantum dots (QDs) and surface modification of quantum dots can improve optical properties. In present work luminescent CdSe QDs were prepared using 2-Mercaptoethanol (2-ME) as stabilizing agent and encapsulated by polymer. Different concentrations of 2-ME were used to tune the emission spectra with respect to their reduced size. Addition of 2-ME to CdSe QDs enhances the trap emission and quenching band edge emission due to (i) increased surface to volume ratio and; (ii) presence of high concentration of sulfide ions as confirmed from EDX analysis as sulfide ions possesses the hole scavenging characteristics. Polymer encapsulation of QDs was carried out to make them stable and to improve their optical properties. Even though there are previous reports addressing the improved optical properties by polymer encapsulation and silica encapsulation but experimentally it has not been reported yet experimentally. In this work we have synthesized and characterized water soluble polymer encapsulated QDs and proved the facts experimentally. Photoluminescence spectroscopy clearly reveals the role of polymer encapsulation in boosting the optical properties of CdSe QDs. FTIR spectra validate the presence of biocompatible functional groups on CdSe4/PEG (Polymer encapsulated QDs).  相似文献   

9.
Thin films of the n-type, organic semiconductor PDI-8CN2 were thermally evaporated on two different dielectric surfaces and their optical and morphological properties investigated using Variable Angle Spectroscopic Ellipsometry (VASE) and Atomic Force Microscopy (AFM), respectively. The two dielectric surfaces used were SiO2 and a plasma polymer derived from the non-synthetic monomer linalyl acetate. The characterisations were performed in order to assess the viability of plasma polymerised linalyl acetate (PLA) thin films as dielectric layers in future Organic Field-Effect Transistor (OFET) devices. These studies resulted in determination of the optical profiles (refractive index and extinction coefficient) in the UV-Vis band of PDI-8CN2 grown on SiO2 and an observation of uniaxial anisotropy in the organic semiconductor. This information is useful for the design of opto-electronic devices using PDI-8CN2 layers. Variations in morphological properties and small variations optical properties were found when the PDI-8CN2 films were grown on PLA layers, and attributed to the change in surface chemistry between dielectrics.  相似文献   

10.
DBD-induced surface modification is very versatile to increase the adhesion or hydrophilicity of polymer films. In this paper, the DBD is produced by repetitive unipolar nanosecond pulses with a rise time of 15 ns and a full width at half maximum of about 30 ns. The power densities of the homogeneous and filamentary DBDs during plasma treatment are 158 and 192 mW/m2, respectively, which are significantly less than that using ac DBD processing, and the corresponding plasma dose is also mild compared to AC DBD treatment. Surface treatment of polyimide films using the homogeneous and filamentary DBDs is studied and compared. The change of chemical and physical modification of the surface before and after plasma processing has been evaluated. It can be found that both surface morphology and chemical composition are modified, and the modification includes the rise of hydrophilicity, surface oxidation and the enhancement of surface roughness. Furthermore, the homogeneous DBD is more effective for surface processing than the filamentary DBD, which can be attributed to the fact that the homogeneous DBD can modify the surface more uniformly and introduce more polar functional groups.  相似文献   

11.
Dielectric barrier discharge (DBD) plasma jets have been studied extensively in recent years because of its wide range of applications. DBD plasmas can be produced using many different gases and can be applied to a broad variety of surfaces and substrates. This work provides comparisons of DBD plasmas generated using argon (Ar), helium (He), and nitrogen (N2), as well as their mixtures with water vapor in order to know how some plasma properties are affected by the use of different gases. All plasmas were studied in two different conditions: using a transfer plate made of a conductive material and using a transfer plate made of an insulating one. It was observed that the process of Penning ionization of nitrogen molecules by direct collisions with metastable atoms and molecules is evident and significant only in plasmas that use He as the working gas, which means that He atoms in metastable states have greater ability to transfer energy to molecules of nitrogen in the plasma. The collisions of metastable He with N2 molecules determine the vibrational temperature (T vib) values in He plasmas, while in Ar and N2 plasmas, the T vib values are determined mainly by collisions of electrons with N2 molecules. It was noticed that the use of an insulating or a conducting transfer plate as the sample holder affects the results of adhesion between poly(dimethylsiloxane) samples, and it is mainly due to the differences in the plasma power, with a higher plasma power leading to better adhesion.  相似文献   

12.
In this study, a non-thermal plasma torch in steamer mode was characterized to apply for surface modification in ambient air. The plasma source is a central rod-ring configuration based on DBD operation. Mixture of Ar/air gases was passed through the hollow Copper rod. A home-built high voltage generator at 18.8 kHz was employed to ignite the plasma. Electrical features of plasma torch were studied and different regions of plasma were examined using optical emission spectroscopy to explore the reactive species that result in efficient treatment. The surfaces of polyvinyl chloride (PVC) and silicone rubber (SIR) films were treated by the cold plasma torch. Contact angle measurement shows the improvement of surface hydrophilicity and wettability. Analysis revealed that the surface energy of the films increases indicating their activation after plasma treatment. This process is attributed to increasing the polar component of the surface energy.  相似文献   

13.
In this paper, polytetrafluoroethylene (PTFE) films are modified using non-equilibrium plasma generated by homogeneous DBD in air at medium pressure, and the results are compared to those treated by using filamentary DBD in air at atmospheric pressure. The surface properties of PTFE films before and after the treatments are studied using contact angle and surface energy measurement, X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). It is found that the plasma treatments modify the PTFE surface in both morphology and composition. The PTFE films modified in both treatments show a remarkable decrease in water contact and a remarkable increase in surface energy. XPS analysis reveals that oxygen-containing polar groups are introduced onto the PTFE surface, and SEM analysis shows that the surfaces of the films are etched after both the treatments. It is found that homogeneous DBD is more effective in PTFE surface modification than filamentary DBD as it can make the contact angle decline to a lower level by introducing more oxygen-containing groups, and the possible reason for this effect is discussed.  相似文献   

14.
江南  曹则贤 《物理》2011,40(11)
有许多种方法可用于在大气中产生等离子体射流,冷等离子体(离子温度在室温附近)射流即是其中的一种.近年来,人们发现氦气或其它惰性气体通过毛细管介质阻挡放电形成的冷等离子体射流具有类似子弹的传输特性,在有机材料表面改性、等离子体医学等领域获得了广泛的应用.通过专门设计的一系列实验,我们逐渐揭示了其产生机理,并深入研究了传输特性.文章简要介绍近年来我们所做的有关大气压冷等离子体的实验过程以及获得的一些重要结论.在对这种等离子体深入了解的基础上,作者还开发了一种新装置,该装置的最大特点是既利用了氦气在辅助放电方面的特性,又不消耗这种昂贵的资源;并且它还特别适合于在臭氧层修复、等离子体医学等方面的应用.  相似文献   

15.
Surface modification of poly(ethylene terephthalate) (PET) fabrics induced by air radiofrequency (RF) plasma treatment has been investigated systematically as a function of plasma device parameters, to identify the plasma-polymer surface interactions prevailing under different operating conditions and leading to an increased color depth upon dyeing. Some tests have also been performed employing chemically inert argon as a feedstock gas. The dyeing properties of plasma-treated fibers were correlated to their topographical characteristics, determined by AFM analysis, and to their chemical surface composition, determined by XPS analysis, while the plasma-originated UV radiation was found to have no relevant effects in PET surface modification. The relative importance of plasma-induced surface processes, such as etching and grafting of polar species, is discussed in relation to their role in modifying PET dyeing properties.  相似文献   

16.
This study aimed to investigate the effects of dielectric-barrier discharge (DBD) cold plasma (CP) pretreatment on Camelina sativa “Soheil cultivar” seed. A DBD plasma reactor system was employed for this purpose. The experiments were performed by taking into account variables including voltages of 15, 18, and 21 kV and times of 2, 4, 8, and 16 min. The measured properties were oil yield extraction (%), oil colour parameters (CIEL*a*b*), protein content (meal) (%), surface analysis using Scanning Electron Microscopy (SEM), and fatty acids profile of Camelina sativa. The results revealed that the CP treatment had a significant improvement in different properties of the extracted oil. It was observed that the extracted oil was increased, with the increasing time of CP exposure. The treatments of CP enhanced the oil yield from 24.3 to 31.5%, and the optimal conditions were identified as 21 kV and 16 min. Also, the maximum protein amount was observed for the samples treated by CP (39.5%). The SEM analysis showed that the cell structures of pre-treated Camelina samples were damaged, thereby improved the oil extraction efficiency. The variations in the values of L*, a*, and b* (max-min) were calculated to be 3.9, −2.5, and 9.7, respectively, which indicated minor changes of CP treatment on the oil colour parameters. The treated samples showed considerable changes of enhancement in linolenic and linoleic acids among poly-unsaturated fatty acids; and a reduction in palmitic acid content, among saturated fatty acids.  相似文献   

17.
Dielectric barrier discharge (DBD) can modify the material surface and result in complicated physical and chemical reactions to improve the surface hydrophilicity, which is proved to be an effective method for surface modification. Compared with the traditional ac-excitation DBD, the DBD using unipolar pulses can avoid local overheat of microdischarges and can improve discharge efficiency under some conditions. In this paper, DBD excited by repetitive unipolar nanosecond generator was used to improve the hydrophobicity of Plexiglass (PMMA) surface by means of the interaction between air plasma and silicone oil. The output voltage had a rise time of 40 ns and a full width at half maximum of about 70 ns. The surface hydrophobicity of the PMMA, before and after the surface modification, was evaluated via the contact angle measurement under different experimental conditions. The values of the contact angle shown in this paper were the average of eight measured values, and the standard deviations were also calculated. The surface energy including polar and dispersion components was calculated using the measured average contact angles of distilled water and polyethyleneglycol. The results showed that, as the increase of the discharge voltage, the contact angle increased but the surface energy decreased. With the increase of treatment time, the water contact angle of the modified surface increased at the beginning, and it would reach to a maximum at 7.5 min treatment, and then decreased. The effect of pulse frequency on the modification results was different at various treatment times. In addition, the possible physical and chemical reaction among the DBD plasma, silicone oil and the PMMA surface was discussed.  相似文献   

18.
Two types of diamond-like carbon (DLC) films with different bonding configurations were produced by pulse-assisted and DC-assisted plasma chemical vapor deposition. The chemical composition, surface morphology, microstructure, internal stress and tribological properties of the two films before and after the ultraviolet (UV) irradiation were investigated and compared. It was found that the UV irradiation had little effects on the chemical composition and surface morphology of both the films, but greatly influenced their tribological properties in the opposite trends. This result was attributed to the different changing outcomes of the bonding configuration induced by the UV actions of primary photo-dissociation and secondary recombination, wherein the inherent bonding configuration and internal stress played important roles.  相似文献   

19.
The optical properties of nanostructured barrier layers based on polyethylene terephthalate formed by ion technology and their resistance to biodegradation are discussed. The influence of the surface energy and relief parameters on the antimicrobial activity of nanostructured barrier layers is established. The study of reflection spectra demonstrates the fine structure of spectral lines apparently connected with the scattering of electromagnetic radiation by charged centers. These centers are formed on a nanostructured polymer surface after ion-plasma treatment as well as upon the deposition of α-C:H films which are known as electrets with a large number of broken bonds.  相似文献   

20.
等离子体对材料的改性效果随放置时间会有所减弱,即表现出一定的时效性,限制了等离子体改性技术的进一步发展。为了探究等离子体介质阻挡放电(DBD)氟化改性环氧树脂的时效性,利用等离子体介质阻挡放电实现了环氧树脂表面氟化改性,并利用扫描电镜(SEM)、表面轮廓仪、X射线光电子能谱分析(XPS)、接触角测试仪、高阻计和闪络电压、表面电位测试系统对改性前和改性后放置在25 ℃老化箱中0~30 d的环氧树脂表面进行了物理形貌和化学组分的表征以及电气性能的测试。测试结果表明,DBD氟化改性实现了氟元素在环氧树脂表面接枝,这使得环氧树脂表面能降低,表面电阻率减小,陷阱能级变浅,从而加快了表面电位衰减速度,进而提升了沿面闪络电压。同时,等离子体DBD氟化改性环氧树脂表现出一定的时效性,放置30 d后,氟元素含量减少,表面能增大,表面电位衰减速度略有减慢,闪络电压也有所下降,但仍高于未处理的试样。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号