首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, the Allee effect is incorporated into a predator–prey model with Holling type II functional response. Compared with the predator–prey model without Allee effect, we find that the Allee effect of prey species increases the extinction risk of both predators and prey. When the handling time of predators is relatively short and the Allee effect of prey species becomes strong, both predators and prey may become extinct. Moreover, it is shown that the model with Allee effect undergoes the Hopf bifurcation and heteroclinic bifurcation. The Allee effect of prey species can lead to unstable periodical oscillation. It is also found that the positive equilibrium of the model could change from stable to unstable, and then to stable when the strength of Allee effect or the handling time of predators increases continuously from zero, that is, the model admits stability switches as a parameter changes. When the Allee effect of prey species becomes strong, longer handling time of predators may stabilize the coexistent steady state.  相似文献   

2.
In this paper, complex dynamics of a diffusive predator–prey model is investigated, where the prey is subject to strong Allee effect and threshold harvesting. The existence and stability of nonnegative constant steady state solutions are discussed. The existence and nonexistence of nonconstant positive steady state solutions are analyzed to identify the ranges of parameters of pattern formation. Spatially homogeneous and nonhomogeneous Hopf bifurcation and discontinuous Hopf bifurcation are proved. These results show that the introduction of strong Allee effect and threshold harvesting increases the system spatiotemporal complexity. Finally, numerical simulations are presented to validate the theoretical results.  相似文献   

3.
In this work, a bidimensional differential equation system obtained by modifying the well-known predator–prey Rosenzweig–MacArthur model is analyzed by considering prey growth influenced by the Allee effect.One of the main consequences of this modification is a separatrix curve that appears in the phase plane, dividing the behavior of the trajectories. The results show that the equilibrium in the origin is an attractor for any set of parameters. The unique positive equilibrium, when it exists, can be either an attractor or a repeller surrounded by a limit cycle, whose uniqueness is established by calculating the Lyapunov quantities. Therefore, both populations could either reach deterministic extinction or long-term deterministic coexistence.The existence of a heteroclinic curve is also proved. When this curve is broken by changing parameter values, then the origin turns out to be an attractor for all orbits in the phase plane. This implies that there are plausible conditions where both populations can go to extinction. We conclude that strong and weak Allee effects on prey population exert similar influences on the predator–prey model, thereby increasing the risk of ecological extinction.  相似文献   

4.
In this work, a bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator–prey schemes by considering a nonmonotonic functional response and Allee effect on population prey. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions over the parameters, the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcation. Furthermore, we give conditions over the parameters such that the model allows long-term extinction or survival of both populations.  相似文献   

5.
The weak Allee effect on the predator is introduced into the classic predator–prey model of Lotka–Volterra type. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. It is shown that the weak Allee effect can bring rich and complicated dynamics to the previous simple model, such as the saddle–node bifurcation, subcritical and supercritical Hopf bifurcations, and Bogdanov–Takens bifurcations, implying that weak Allee effect can be one of the simple reasons for many complicated behaviours in the predator–prey communities.  相似文献   

6.
A three dimensional ecoepidemiological model consisting of susceptible prey, infected prey and predator is proposed and analysed in the present work. The parameter delay is introduced in the model system for considering the time taken by a susceptible prey to become infected. Mathematically we analyze the dynamics of the system such as, boundedness of the solutions, existence of non-negative equilibria, local and global stability of interior equilibrium point. Next we choose delay as a bifurcation parameter to examine the existence of the Hopf bifurcation of the system around its interior equilibrium. Moreover we use the normal form method and center manifold theorem to investigate the direction of the Hopf bifurcation and stability of the bifurcating limit cycle. Some numerical simulations are carried out to support the analytical results.  相似文献   

7.
In this paper, complex dynamics of the discrete predator–prey model with the prey subject to the Allee effect are investigated in detail. Firstly, when the prey intrinsic growth rate is not large, the basins of attraction of the equilibrium points of the single population model are given. Secondly, rigorous results on the existence and stability of the equilibrium points of the model are derived, especially, by analyzing the higher order terms, we obtain that the non-hyperbolic extinction equilibrium point is locally asymptotically stable. The existences and bifurcation directions for the flip bifurcation, the Neimark–Sacker bifurcation and codimension-two bifurcations with 1:2 resonance are derived by using the center manifold theorem and the bifurcation theory. We derive that the model only exhibits a supercritical flip bifurcation and it is possible for the model to exhibit a supercritical or subcritical Neimark–Sacker bifurcation at the larger positive equilibrium point. Chaos in the sense of Marotto is proved by analytical methods. Finally, numerical simulations including bifurcation diagrams, phase portraits, sensitivity dependence on the initial values, Lyapunov exponents display new and rich dynamical behaviour. The analytic results and numerical simulations demonstrate that the Allee effect plays a very important role for dynamical behaviour.  相似文献   

8.
In this paper, we deal with the effect of the shape of herd behavior on the interaction between predator and prey. The model analysis was studied in three parts. The first, The analysis of the system in the absence of spatial diffusion and the time delay, where the local stability of the equilibrium states, the existence of Hopf bifurcation have been investigated. For the second part, the spatiotemporal dynamics introduce by self diffusion was determined, where the existence of Hopf bifurcation, Turing driven instability, Turing-Hopf bifurcation point have been proved. Further, the order of Hopf bifurcation points and regions of the stability of the non trivial equilibrium state was given. In the last part of the paper, we studied the delay effect on the stability of the non trivial equilibrium, where we proved that the delay can lead to the instability of interior equilibrium state, and also the existence of Hopf bifurcation. A numerical simulation was carried out to insure the theoretical results.  相似文献   

9.
The local dynamics of a two-trophic chain in the presence of both overcrowding and undercrowding effects on prey growth is investigated. The starting point is given by a general predator–prey system, in which the prey growth rate and the trophic interaction function are defined only by some properties determining their shapes; in particular, the prey growth function is assumed to model a strong Allee effect. A stability analysis of the system using the predation efficiency as bifurcation parameter is performed; conditions for the existence and stability of extinction and coexistence equilibrium states are determined, and peculiar features of the dynamics exhibited by the system are presented, with particular attention to limit cycles and bistability situations. Results are compared with those obtained when overcrowding and undercrowding effects are considered separately.  相似文献   

10.
In this paper, we investigate the impact of strong Allee effect on the stability of a discrete-time predator–prey model with a non-monotonic functional response. The dynamics of discrete-time predator–prey models with strong Allee effect is studied earlier. But, the mathematical investigations of predator–prey dynamics in discrete-time set up with Holling type-IV functional response and strong Allee effect in prey are lacking. The proposed model supports the coexistence of two steady states, and the mathematical features of the model are analyzed based on local stability and bifurcation theory. By considering the Allee parameter as the bifurcation parameter, we provide sufficient conditions for the flip and the Neimark–Sacker bifurcations. We observe that Allee parameter plays a significant role in the dynamics of the system.  相似文献   

11.
In this paper, a predator–prey Leslie–Gower model with disease in prey has been developed. The total population has been divided into three classes, namely susceptible prey, infected prey and predator population. We have also incorporated an infected prey refuge in the model. We have studied the positivity and boundedness of the solutions of the system and analyzed the existence of various equilibrium points and stability of the system at those equilibrium points. We have also discussed the influence of the infected prey refuge on each population density. It is observed that a Hopf bifurcation may occur about the interior equilibrium taking refuge parameter as bifurcation parameter. Our analytical findings are illustrated through computer simulation using MATLAB, which show the reliability of our model from the eco-epidemiological point of view.  相似文献   

12.
The dynamics of a kind of reaction–diffusion predator–prey system with strong Allee effect in the prey population is considered. We prove the existence and uniqueness of the solution and give a priori bound. Hopf bifurcation and steady state bifurcation are studied. Results show that the Allee effect has significant impact on the dynamics.  相似文献   

13.
In this article, we propose and study a generalized Ricker–Beverton–Holt competition model subject to Allee effects to obtain insights on how the interplay of Allee effects and contest competition affects the persistence and the extinction of two competing species. By using the theory of monotone dynamics and the properties of critical curves for non-invertible maps, our analysis show that our model has relatively simple dynamics, i.e. almost every trajectory converges to a locally asymptotically stable equilibrium if the intensity of intra-specific competition intensity exceeds that of inter-specific competition. This equilibrium dynamics is also possible when the intensity of intra-specific competition intensity is less than that of inter-specific competition but under conditions that the maximum intrinsic growth rate of one species is not too large. The coexistence of two competing species occurs only if the system has four interior equilibria. We provide an approximation to the basins of the boundary attractors (i.e. the extinction of one or both species) where our results suggests that contest species are more prone to extinction than scramble ones are at low densities. In addition, in comparison to the dynamics of two species scramble competition models subject to Allee effects, our study suggests that (i) Both contest and scramble competition models can have only three boundary attractors without the coexistence equilibria, or four attractors among which only one is the persistent attractor, whereas scramble competition models may have the extinction of both species as its only attractor under certain conditions, i.e. the essential extinction of two species due to strong Allee effects; (ii) Scramble competition models like Ricker type models can have much more complicated dynamical structure of interior attractors than contest ones like Beverton–Holt type models have; and (iii) Scramble competition models like Ricker type competition models may be more likely to promote the coexistence of two species at low and high densities under certain conditions: At low densities, weak Allee effects decrease the fitness of resident species so that the other species is able to invade at its low densities; While at high densities, scramble competition can bring the current high population density to a lower population density but is above the Allee threshold in the next season, which may rescue a species that has essential extinction caused by strong Allee effects. Our results may have potential to be useful for conservation biology: For example, if one endangered species is facing essential extinction due to strong Allee effects, then we may rescue this species by bringing another competing species subject to scramble competition and Allee effects under certain conditions.  相似文献   

14.
The complex dynamics of a two-trophic chain are investigated. The chain is described by a general predator–prey system, in which the prey growth rate and the trophic interaction functions are defined only by some properties determining their shapes. To account for undercrowding phenomena, the prey growth function is assumed to model a strong Allee effect; to simulate the predator interference during the predation process, the trophic function is assumed predator-dependent. A stability analysis of the system is performed, using the predation efficiency and a measure of the predator interference as bifurcation parameters. The admissible scenarios are much richer than in the case of prey-dependent trophic functions, investigated in Buffoni et al. (2011). General conditions for the number of equilibria, for the existence and stability of extinction and coexistence equilibrium states are determined, and the bifurcations exhibited by the system are investigated. Numerical results illustrate the qualitative behaviours of the system, in particular the presence of limit cycles, of global bifurcations and of bistability situations.  相似文献   

15.
The paper explores an eco-epidemiological model with weak Allee in predator, and the disease in the prey population. We consider a predator-prey model with type II functional response. The curiosity of this paper is to consider different competition coefficients within the prey population, which leads to the emergent carrying capacity. We perform the local and global stability analysis of the equilibrium points and the Hopf bifurcation analysis around the endemic equilibrium point. Further we pay attention to the chaotic dynamics which is produced by disease. Our numerical simulations reveal that the three species eco-epidemiological system without weak-Allee induced chaos from stable focus for increasing the force of infection, whereas in the presence of the weak-Allee effect, it exhibits stable solution. We conclude that chaotic dynamics can be controlled by the Allee parameter as well as the competition coefficients. We apply basic tools of non-linear dynamics such as Poincare section and maximum Lyapunov exponent to identify chaotic behavior of the system.  相似文献   

16.
In this paper, a diffusive predator–prey system with a constant prey refuge and time delay subject to Neumann boundary condition is considered. Local stability and Turing instability of the positive equilibrium are studied. The effect of time delay on the model is also obtained, including locally asymptotical stability and existence of Hopf bifurcation at the positive equilibrium. And the properties of Hopf bifurcation are determined by center manifold theorem and normal form theorem of partial functional differential equations. Some numerical simulations are carried out.  相似文献   

17.
In this work, a modified Leslie–Gower predator–prey model is analyzed, considering an alternative food for the predator and a ratio‐dependent functional response to express the species interaction. The system is well defined in the entire first quadrant except at the origin ( 0 , 0 ) . Given the importance of the origin ( 0 , 0 ) as it represents the extinction of both populations, it is convenient to provide a continuous extension of the system to the origin. By changing variables and a time rescaling, we obtain a polynomial differential equations system, which is topologically equivalent to the original one, obtaining that the non‐hyperbolic equilibrium point ( 0 , 0 ) in the new system is a repellor for all parameter values. Therefore, our novel model presents a remarkable difference with other models using ratio‐dependent functional response. We establish conditions on the parameter values for the existence of up to two positive equilibrium points; when this happen, one of them is always a hyperbolic saddle point, and the other can be either an attractor or a repellor surrounded by at least one limit cycle. We also show the existence of a separatrix curve dividing the behavior of the trajectories in the phase plane. Moreover, we establish parameter sets for which a homoclinic curve exits, and we show the existence of saddle‐node bifurcation, Hopf bifurcation, Bogdanov–Takens bifurcation, and homoclinic bifurcation. An important feature in this model is that the prey population can go to extinction; meanwhile, population of predators can survive because of the consumption of alternative food in the absence of prey. In addition, the prey population can attain their carrying capacity level when predators go to extinction. We demonstrate that the solutions are non‐negatives and bounded (dissipativity and permanence of population in many other works). Furthermore, some simulations to reinforce our mathematical results are shown, and we further discuss their ecological meanings. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, spatial dynamics of a diffusive predator-prey model with Leslie-Gower functional response and strong Allee effect is studied. Firstly, we obtain the critical condition of Hopf bifurcation and Turing bifurcation of the PDE model. Secondly, taking self-diffusion coefficient of the prey as bi- furcation parameter, the amplitude equations are derived by using multi-scale analysis methods. Finally, numerical simulations are carried out to verify our theoretical results. The simulations show that with the decrease of self- diffusion coefficient of the prey, the preys present three pattern structures: spot pattern, mixed pattern, and stripe pattern. We also observe the transi- tion from spot patterns to stripe patterns of the prey by changing the intrinsic growth rate of the predator. Our results reveal that both diffusion and the intrinsic growth rate play important roles in the spatial distribution of species.  相似文献   

19.
The control and management of chaotic population is one of the main objectives for constructing mathematical model in ecology today. In this paper, we apply a technique of controlling chaotic predator–prey population dynamics by supplying additional food to top-predator. We formulate a three species predator–prey model supplying additional food to top-predator. Existence conditions and local stability criteria of equilibrium points are determined analytically. Persistence conditions for the system are derived. Global stability conditions of interior equilibrium point is calculated. Theoretical results are verified through numerical simulations. Phase diagram is presented for various quality and quantity of additional food. One parameter bifurcation analysis is done with respect to quality and quantity of additional food separately keeping one of them fixed. Using MATCONT package, we derive the bifurcation scenarios when both the parameters quality and quantity of additional food vary together. We predict the existence of Hopf point (H), limit point (LP) and branch point (BP) in the model for suitable supply of additional food. We have computed the regions of different dynamical behaviour in the quantity–quality parametric plane. From our study we conclude that chaotic population dynamics of predator prey system can be controlled to obtain regular population dynamics only by supplying additional food to top predator. This study is aimed to introduce a new non-chemical chaos control mechanism in a predator–prey system with the applications in fishery management and biological conservation of prey predator species.  相似文献   

20.
Recently, Venturino and Petrovskii proposed a general predator–prey model with group defense for prey species (Venturino and Petrovskii, 2013). The local dynamics had been studied and showed that the model might undergo Hopf bifurcation, and have an extinction domain. In this paper, we dedicate ourselves to the investigation of the global dynamics of the model by establishing the conditions of the nonexistence of periodic orbits, and the existence and uniqueness of limit cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号