首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, high frequency and low power ultrasound without external heating source and mechanical stirring in biodiesel production were studied. Transesterification of soybean oil with methanol and catalyzed by KOH was investigated using ultrasound equipment and ultrasonic transducer. The effect of ultrasonic output power (3 W–9 W), ultrasonic frequency (1 MHz and 3 MHz), and alcohol to oil molar ratio (6:1 and 8:1) have been investigated. The increase in ultrasonic power provided higher conversion rates. In addition, higher conversion rates were obtained by increasing the ultrasonic frequency from 1 MHz to 3 MHz (48.7% to 79.5%) for the same reaction time. Results also indicate that the speed of sound can be used to evaluate the produced biodiesel qualitatively. Further, the ultrasound system presented electric consumption (46.2 W∙h) four times lower than achieved using the conventional method (211.7 W∙h and 212.3 W∙h). Thus, biodiesel production using low power ultrasound in the MHz frequency range is a promising technology that could contribute to biodiesel production processes.  相似文献   

2.
A simple, one-pot high frequency ultrasonication (490 kHz) methodology to convert hydrophobic and amphipathic amino acids into nanostructures was investigated. The approach involved the oxidative coupling of aromatic amino acids (phenylalanine and tryptophan) in aqueous solutions to form high molecular weight dimers and oligomers. The role of cavitation bubble surface and ultrasonic power to trigger the out-of-equilibrium self-assembly of dimers and trimers to spherical and uniform nanostructures with controlled size has been discussed. The synthesized particles exhibited fluorescence in blue, green and red spectral regions and a strong antioxidant activity.  相似文献   

3.
Cephalexin (CPX) and doxycycline (DOX) are two of the most used antibiotics to treat bacterial infections in human medicine, veterinary practices, animal husbandry, agriculture, aquaculture, among others. Nevertheless, due to their excessive consumption and incomplete absorption during their metabolization, they have been detected in different environmental matrices and the effluents of wastewater treatment plants, which reflects that conventional water treatment methods are not enough to eliminate this type of compounds. This paper presents the main results about the removal of the antibiotics CPX and DOX under low frequency (40 kHz) ultrasonic radiation (US). The effects of operational parameters such as the solution initial pH and the applied US power were assessed considering the response surface methodology and a face centered, central composite experimental design. The results indicated that evaluated operational factors significantly affect the pollutants elimination and that US technology is able to remove them completely. In addition, in terms of mineralization, experimental results showed a reduction of the organic carbon present in the solutions and a significant increase of ions (nitrates and sulfates) concentration, suggesting that part of the organic matter was transformed into CO2, H2O and inorganic species. Finally, results regarding the samples toxicity indicated that ultrasonic treatment could promote a significant reduction in this parameter, and the potential negative effect associated to CPX and DOX presence in water bodies.  相似文献   

4.
This article aims to apply the ultrasound technique in the field of clean technology to protect environment. The principle of sonochemistry is conducted here to degrade pesticides in simulated industrial wastewater resulted from a factory manufacturing pesticides namely diazinon. Diazinon pesticide selected in this study for degradation under high frequency ultrasound wave. Three different initial concentrations of diazinon (800, 1200, and 1800 ppm), at different solution volumes were investigated in to degrade dissolved diazinon in water. Ultrasound device with 1.7 MHz, and 0.044 cm diameter, was used to study the degradation process.

It is found that as the concentration of diazinon increased, the degradation is also increasing, and when the solution volume increases, the ability to degraded pesticides decreases. The experimental results showed an optimum condition achieved for degradation of diazinon at 1200 ppm as initial concentration and 50 ml solution volume. Kinetic modeling applied for the obtained results showed that the degradation of diazinon by high ultrasound frequency wave followed a pseudo-first-order model with apparent rate constant of around of 0.01 s−1.  相似文献   


5.
This work validated, in a higher frequency range, the theoretical predictions made by Boyle around 1930, which state that the optimal transmission of sound pressure through a metal plate occurs when the plate thickness equals a multiple of half the wavelength of the sound wave. Several reactor design parameters influencing the transmission of high frequency ultrasonic waves through a stainless steel plate were examined. The transmission properties of steel plates of various thicknesses (1–7 mm) were studied for frequencies ranging from 400 kHz to 2 MHz and at different distances between plates and transducers. It was shown that transmission of sound pressure through a steel plate showed high dependence of the thickness of the plate to the frequency of the sound wave (thickness ratio). Maximum sound pressure transmission of ∼60% of the incident pressure was observed when the ratio of the plate thickness to the applied frequency was a multiple of a half wavelength (2 MHz, 6 mm stainless steel plate). In contrast, minimal sound pressure transmission (∼10–20%) was measured for thickness ratios that were not a multiple of a half wavelength. Furthermore, the attenuation of the sound pressure in the transmission region was also investigated. As expected, it was confirmed that higher frequencies have more pronounced sound pressure attenuation than lower frequencies. The spatial distribution of the sound pressure transmitted through the plate characterized by sonochemiluminescence measurements using luminol emission, supports the validity of the pressure measurements in this study.  相似文献   

6.
The function of an expander is to obstruct the noise signal transmitted by the pulser so that it does not pass into the transducer or receive electronics, where it can produce undesirable ring-down in an ultrasound imaging application. The most common type is a diode-based expander, which is essentially a simple diode-pair, is widely used in pulse-echo measurements and imaging applications because of its simple architecture. However, diode-based expanders may degrade the performance of ultrasonic transducers and electronic components on the receiving and transmitting sides of the ultrasound systems, respectively. Since they are non-linear devices, they cause excessive signal attenuation and noise at higher frequencies and voltages. In this paper, a new type of expander that utilizes power MOSFET components, which we call a power MOSFET-based expander, is introduced and evaluated for use in high frequency ultrasound imaging systems. The performance of a power MOSFET-based expander was evaluated relative to a diode-based expander by comparing the noise figure (NF), insertion loss (IL), total harmonic distortion (THD), response time (RT), electrical impedance (EI) and dynamic power consumption (DPC). The results showed that the power MOSFET-based expander provided better NF (0.76 dB), IL (−0.3 dB) and THD (−62.9 dB), and faster RT (82 ns) than did the diode-based expander (NF (2.6 dB), IL (−1.4 dB), THD (−56.0 dB) and RT (119 ns)) at 70 MHz. The −6 dB bandwidth and the peak-to-peak voltage of the echo signal received by the transducer using the power MOSFET-based expander improved by 17.4% and 240% compared to the diode-based expander, respectively. The new power MOSFET-based expander was shown to yield lower NF, IL and THD, faster RT and lower ring down than the diode-based expander at the expense of higher dynamic power consumption.  相似文献   

7.
In recent years the use of high frequency ultrasound standing waves (megasonics) for droplet or cell separation from biomass has emerged beyond the microfluidics scale into the litre to industrial scale applications. The principle for this separation technology relies on the differential positioning of individual droplets or particles across an ultrasonic standing wave field within the reactor and subsequent biomass material predisposition for separation via rapid droplet agglomeration or coalescence into larger entities. Large scale transducers have been characterised with sonochemiluminescence and hydrophones to enable better reactor designs. High frequency enhanced separation technology has been demonstrated at industrial scale for oil recovery in the palm oil industry and at litre scale to assist olive oil, coconut oil and milk fat separation. Other applications include algal cell dewatering and milk fat globule fractionation. Frequency selection depends on the material properties and structure in the biomass mixture. Higher frequencies (1 and 2 MHz) have proven preferable for better separation of materials with smaller sized droplets such as milk fat globules. For palm oil and olive oil, separation has been demonstrated within the 400–600 kHz region, which has high radical production, without detectable impact on product quality.  相似文献   

8.
Structural and surface properties of different natural aluminosilicates (layered, chain and framework structural types) exposed of 20 kHz ultrasound irradiation (0–120 min) in aqueous and 35 wt%. aqueous H2O2 dispersions were studied by X-ray diffraction (XRD), dynamic light scattering (DLS), nitrogen adsorption–desorption, thermal analysis, and Fourier transform infrared spectroscopy (FTIR) techniques. It was confirmed that sonication caused slight changes in the structure of investigated minerals whereas their textural properties were significantly affected. The aqueous dispersions of montmorillonite (Mt), clinoptilolite (Zlt), glauconite (Glt) and palygorskite (Pal) were represented by several particles size fractions according to DLS-study. Ultrasound irradiation produced a decrease of the average particle diameter by 4–6 times in water and by 1.3–5 times in H2O2 dispersions except for Pal, which underwent strong agglomeration. A significant increase of total pore volume and pore diameter was observed for Glt sonicated in H2O2 dispersions whereas for Pal mainly micropore volume sharply increased in both aqueous and H2O2 dispersions.  相似文献   

9.
本文阐述了超声波用于树脂再生的最新技术,超声脱附以及它的原理一超声场聚能效应。该方法和传统的化学方法相比较:不仅具有操作简单,化学药品消耗少,排污量少等优点。而且还能增加树脂的脱附速率,减少脱附时间,增加解吸平衡物的浓度。本文综述了在这一领域的最近研究进展,各种不同频率和功率对树脂再生效果的影响,为该领域的研究工作提供参考。  相似文献   

10.
Pumpkin seed oil (PSO), which is a valuable compound with high nutritional value used for the prevention of various chronic diseases, is prone to oxidation. In this work, small and uniform (su) ovalbumin (OVA) and pectin (PEC) were used to stabilize PSO in the form of an emulsion. The results showed that suOVA-PEC-PSO emulsion with a droplet size of 9.82 ± 0.05 μm was successfully self-assembled from PSO, PEC, and suOVA solution (with a droplet size of 230.13 ± 14.10 nm) treated with 300 W ultrasound, owing to the formation of a more stable interfacial film on the surface of droplets. The interfacial, rheological, emulsifying, and antioxidant properties of the suOVA-PES-PSO emulsions were excellent, owing to the synergistic effects between PEC and suOVA solution. Moreover, the physical stability of the suOVA-PEC-PSO emulsions to salt stress, a freeze-thaw cycle, and heat treatment was also increased and the oxidation of linolenic acid was notably delayed. These results have extended the food-related applications of OVA and PSO, and provide a promising foundation for further exploration of the self-assembly of composite emulsions by small and uniform proteins.  相似文献   

11.
Comparative studies of enzymatic degumming process of rapeseed oil were carried out in mechanical-stirring and ultrasonic-assisted mechanical-stirring systems. The influences of enzyme dosage (10–50 mg/kg), pH (4.5–6), temperature (45–65 °C), water amount (1–3%), ultrasonic power (0.06–0.09 W/cm3) and reaction time were investigated subsequently. A suitable ultrasonic power of 0.07 W/cm3 was determined to guarantee satisfactory degumming efficiency and enzyme activity. Compared to the mechanical-stirring system, optimum temperature of phospholipase A (PLA) in the ultrasonic-assisted mechanical-stirring system was about 5 °C higher, while the effects of pH on both of the two systems were quite similar. Less time and water were used in the ultrasonic-assisted mechanical-stirring system for enzymatic degumming. The study on the quality changes of degummed oils showed that ultrasound could accelerate the oxidation of edible oils due to the effect of cavitation, thus more attention should be paid on the oxidative stability in the further application.  相似文献   

12.
Zderic V  Brayman AA  Sharar SR  Crum LA  Vaezy S 《Ultrasonics》2006,45(1-4):113-120
Our objective was to investigate whether hemorrhage control can be achieved faster when high-intensity focused ultrasound (HIFU) is applied in the presence of ultrasound contrast agents (UCA) as compared to HIFU only application. Incisions (3 cm long and 0.5 cm deep) were produced in the livers of anesthetized rabbits. UCA Optison (0.18 ml/kg) was injected into the mesenteric vein. A HIFU applicator (5.5 MHz, 6800 W/cm2 in situ) was scanned at a rate of 1–2 mm/s in one direction over the incision (with multiple passes if needed), until hemostasis was achieved. Hemostasis times were 59 ± 23 s (n = 21) in the presence of Optison and 70 ± 23 s (n = 29) without Optison. The presence of Optison produced on average 37% reduction in hemostasis times normalized to initial bleeding rates (p < 0.05), as well as 60% faster formation of the coagulum seal over the incision (p < 0.05). Gross and histological observations showed similar appearance of HIFU lesions produced in the presence of Optison and HIFU lesions produced without Optison. Our results suggest potential utility of UCA for increasing efficiency of HIFU-induced hemostasis of solid organ injuries.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted.  相似文献   

14.
张皓宇  马泉龙  张蕾  钟徽 《应用声学》2023,42(5):908-916
肺超声中的特殊征象B线对于临床诊断肺水肿等肺部疾病有重要意义,但诊断结果依赖于医生的主观判断,为了客观、自动地识别B线,提高诊断准确率,本文提出了一种基于超声回波射频信号的肺脏超声特殊征象B线识别方法。本文首先选取了射频信号的排列熵、信息熵、峰度、偏度、能量作为特征参数,利用独立样本t检验和单参数贝叶斯分类的方法检验超声射频数据中B线以及非B线所对应射频数据的各个参量的差异性以及各参数与B线识别的相关性。然后将不同的双参量组合输入非线性支持向量机(SVM)中进行分类,比较各个组合的分类效果。结果显示信息熵与排列熵参数组合基于射频信号的分类效果最好,分类灵敏度为90.521%,特异性为98.106%,准确率为96.328%,AUC等于0.95。在引入后处理算法后,B线识别效果有进一步提升,得到分类平均灵敏度为95.23%,平均特异性为97.22%,平均准确率为96.88%。研究结果表明基于射频数据的SVM双参量B线识别方法对辅助临床诊断具有重要价值,信息熵和排列熵的组合可以有效的对特殊征象B线进行高精度识别。  相似文献   

15.
A lysozyme-oregano essential oil (Lys-OEO) antibacterial emulsion was developed via ultrasonic treatment. Based on the general emulsion materials of ovalbumin (OVA) and inulin (IN), the addition of Lys and OEO successfully inhibited the growth of E. coli and S. aureus, two representatives of which were Gram-negative and Gram-positive bacteria respectively. The emulsion system in this study was designed to compensate for the limitation that Lys could only act on Gram-positive bacteria, and the stability of the emulsion was improved using ultrasonic treatment. The optimal amounts among OVA, Lys and OEO were found to be the mass ratio of 1:1 (Lys to OVA) and 20% (w/w) OEO. The ultrasonic treatment at the power of 200, 400, 600, and 800 W and time length of 10 min improved the stability of emulsion, in which the surface tension was below 6.04 mN/m and the Turbiscan stability index (TSI) did not exceed 10. The multiple light scattering showed that sonicated emulsions were less prone to delamination; salt stability and pH stability of emulsions were improved, CLSM image showed emulsion as oil-in-water type. In the meantime, the particles of the emulsions were found to become smaller and more uniform with ultrasonic treatment. The best dispersion and stability of the emulsion were both achieved at 600 W with a zeta potential of 7.7 mV, the smallest particle size and the most uniform particle distribution.  相似文献   

16.
This study demonstrates the potential of Na-silica waste sponge as a source of low cost catalyst in the transesterification of waste cooking oil aided by ultrasound. In this work an environmentally friendly and efficient transesterification process using Na-loaded SiO2 from waste sponge skeletons as a solid catalyst is presented. The results showed that the methyl esters content of 98.4 ± 0.4 wt.% was obtainable in less than an hour (h) of reaction time at 55 °C. Optimization of reaction parameters revealed that MeOH:oil, 9:1; catalyst, 3 wt.% and reaction duration of 30 min as optimum reaction conditions. The catalyst is able to tolerant free fatty acid and moisture content up to 6% and 8%, respectively. In addition, the catalyst can be reused for seven cycles while maintaining the methyl esters content at 86.3%. Ultrasound undoubtedly assisted in achieving this remarkable result in less than 1 h reaction time. For the kinetics study at 50–60 °C, a pseudo first order model was proposed, and the activation energy of the reaction is determined as 33.45 kJ/mol using Arrhenius equation.  相似文献   

17.
张健  李成林 《应用声学》1996,15(6):21-25
本文介绍一种中心工作频率在4.5kHz发射电功率8kW的16基元线列阵发射系统,并介绍了使用DSP56001数字信号处理产生线性调频扫描波束发射信号及接收信号的频域处理和和一些测试结果。  相似文献   

18.
A systematic study on the sonocrystallisation of ZIF-8 (zeolitic imidazolate framework-8) in a water-based system was investigated under different mixing speeds, ultrasound frequencies, calorimetric powers and sonication time. Regardless of the synthesis technique, pure crystals of ZIF-8 with high BET (Brunauer, Emmett and Teller) specific surface area (SSA) can be obtained in water after only 5 s. Furthermore, 5 s sonication produced even smaller crystals (~0.08 µm). The type of technique applied for producing the ZIF-8 crystals did not have any significant impact on crystallinity, purity and yield. Crystal morphology and size were affected by the use of ultrasound and mixing, obtaining nanoparticles with a more spherical shape than in silent condition (no ultrasound and mixing). However, no specific trends were observed with varying frequency, calorimetric power and mixing speed. Ultrasound and mixing may have an effect on the nucleation step, causing the fast production of nucleation centres. Furthermore, the BET SSA increased with increasing mixing speed. With ultrasound, the BET SSA is between the values obtained under silent condition and with mixing. A competition between micromixing and shockwaves has been proposed when sonication is used for ZIF-8 production. The former increases the BET SSA, while the latter could be responsible for porosity damage, causing a decrease of the surface area.  相似文献   

19.
A low frequency piezoelectric power harvester using a spiral-shaped bimorph   总被引:2,自引:0,他引:2  
We propose a spiral-shaped piezoelectric bimorph power harvester operating with coupled flexural and extensional vibration modes for applications to low frequency energy sources. A theoretical analysis is performed and the computational results show that the spiral structure has relatively low operating frequency compared to beam power harvesters of the same size. It is found that to optimize the performance of a piezoelectric spiral-shaped harvester careful design is needed.  相似文献   

20.
Inulin, rice bran oil and rosemary essential oil were used to produce high quality emulsion filled gel (EFG) using ultrasonic radiation. Response surface methodology was used to investigate the effects of oil content, inulin content and power of ultrasound on the stability and consistency of prepared EFG. The process conditions were optimized by conducting experiments at five different levels. Second order polynomial response surface equations were developed indicating the effect of variables on EFG stability and consistency. The oil content of 18%; inulin content of 44.6%; and power of ultrasound of 256 W were found to be the optimum conditions to achieve the best EFG stability and consistency. Microstructure and rheological properties of prepared EFG were investigated. Oil oxidation as a result of using ultrasonic radiation was also investigated. The increase of oxidation products and the decrease of total phenolic compounds as well as radical scavenging activity of antioxidant compounds showed the damaging effect of ultrasound on the oil quality of EFG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号