首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Inactivation of phage by pulsed electric field (PEF) treatment using Escherichia coli phages (M13mp18 and λ phage) as the phage particle model was studied. E. coli phages were successfully inactivated, and the absence of degradation of biological molecules was confirmed by electrophoretic analysis of these molecules from the inactivated phages. The comparison of sensitivity to PEF treatment between the E. coli phage and the E. coli cells was also carried out. The E. coli phages were more sensitive to the PEF treatment than the E. coli cells, and this difference allowed the preferential inactivation of E. coli phages.  相似文献   

2.
As a basic technique of molecular cloning, bio-transformation has been successfully used in the fields of biomedicine and food processing. In this study, we established a transformation system of exogenous DNA into E. coli cells mediated by ultrasound. Under the optimal conditions (i.e. 35 °C, 40 W, 25 s, OD600 = 0.4–0.6) optimized by RSM, the transformation efficiency reached at 1.006 × 107 CFU/μg DNA. The results of membrane permeability, macromolecular substance and cell structure analysis before and after ultrasound treatment showed that the damage of host cells induced by lower (40 W) ultrasound and shorter ultrasound time (25 s) was reversible, and the transformation efficiency and cell survival rate were not significantly affected under this condition. In brief, proper changes in cell membrane and cell wall were the basic conditions for host cells to uptake exogenous DNA, while, whether exogenous DNA could be replicated and expressed in cells depends on the viability of host cells.  相似文献   

3.
For the first time, this study addresses the intensification of supercritical carbon dioxide (SC-CO2) treatments using high-power ultrasound (HPU) for the inactivation of fungal (Aspergillus niger) and bacterial (Clostridium butyricum) spores in oil-in-water emulsions. The inactivation kinetics were analyzed at different pressures (100, 350 and 550 bar) and temperatures (50, 60, 70, 80, 85 °C), depending on the microorganism, and compared to the conventional thermal treatment. The inactivation kinetics were satisfactorily described using the Weibull model.Experimental results showed that SC-CO2 enhanced the inactivation level of both spores when compared to thermal treatments. Bacterial spores (C. butyricum) were found to be more resistant to SC-CO2 + HPU, than fungal (A. niger) ones, as also observed in the thermal and SC-CO2 treatments. The application of HPU intensified the SC-CO2 inactivation of C. butyricum spores, e.g. shortening the total inactivation time from 10 to 3 min at 85 °C. However, HPU did not affect the SC-CO2 inactivation of A. niger spores. The study into the effect of a combined SC-CO2 + HPU treatment has to be necessarily extended to other fungal and bacterial spores, and future studies should elucidate the impact of HPU application on the emulsion’s stability.  相似文献   

4.
Linear (first-order) and non-linear (Weibull, biphasic, and log-logistic) models were evaluated for predicting the inactivation kinetics of Escherichia coli and Listeria monocytogenes on grass carp treated by a novel technique (UPFB) combining ultrasound (US) with plasma functionalized buffer (PFB). Results showed that UPFB was more effective for inactivating bacteria when compared with individual applications of US or PFB with reductions of 3.92 and 3.70 log CFU/g for Escherichia coli and Listeria monocytogenes, respectively. Compared with the linear model, the three non-linear models presented comparable performances and were more suitable for describing the inactivation kinetics with superior adj-R2 (0.962–0.999), accuracies (0.970–1.006) and bias factors (0.995–1.031), and by assessing the strengths of evidence, weights of evidence and evidence ratios for the models, the biphasic model was identified as the best fit model. The current study provided new insights into the effective evaluation of decontamination methods.  相似文献   

5.
This study evaluated the application of ultrasound alone or combined with chlorine dioxide (ClO2) for Salmonella Typhimurium and Escherichia coli inactivation in poultry processing chiller tank water. A Full Factorial Design (FFD) 22 was conducted for each microorganism to evaluate the effect of ultrasound exposure time (x1: 1 to 9 min; fixed: 37 kHz; 330 W; 25 °C) using a bath, and ClO2 concentration (x2: 1 to 17 mg L−1) on microorganism count expressed in log CFU mL−1 in distilled water. Variable x2 had a negative effect on Salmonella Typhimurium (-5.09) and Escherichia coli (-2.00) count, improving the inactivation; while a x1 increase present no inactivation improvement, explaining the use of x1 lower level (1 min) and x2 higher level (17 mg L−1). The best condition for microorganism inactivation based on FFD was evaluated in chiller tank water (with organic matter) at 25, 16, and 4 °C; x1 was kept (1 min), however x2 was adjusted to obtain the same residual free chlorine (2.38 mg L−1) considering the ClO2 consumption by organic matter, achieving the value of 30 mg L−1. An inactivation of 49% and 31% were observed for Salmonella Typhimurium and Escherichia coli. When ultrasound was replaced by a simple agitation in the presence of ClO2, there was no inactivation for both microorganisms. Moreover, at poultry carcass pre-chilling (16 °C) and chilling (4 °C) conditions, the synergism of ultrasound combined with ClO2 was more pronounced, with microorganisms’ reductions up to 100%.  相似文献   

6.
Raw meat emulsions may have natural, spoilage and pathogenic microorganisms due to the origin and characteristics of this food matrix. All of these microorganisms must be minimized during industrial processing to make food consumption safe and meet quality regulations. Therefore, in this research, the effect of probe ultrasound on the inactivation of three kinds of microorganisms in a raw meat emulsion is evaluated. The microorganisms are: natural microflora NAM, Listeria monocytogenes LIS, and Lactobacillus delbrueckii LAC. A high-intensity probe ultrasound system was used, during 1.0, 2.5, 5.0, 7.5 and 10 min, with pulsed waves of 0.0, 10, 20 and 30 seg, and 200, 250, 300, 350 and 400 W of power. The interrelation between time, wave pulse cycle, and power factors was assessed. The results showed a positive linear independence effect in the treatments without wave pulse for each microorganism, and a quadratic interaction with the time and the ultrasound power for the inactivation of the three kinds of microorganisms. Besides, the desirability function for the inactivation reached up to 60% of the microbial population with the probe ultrasound treatment, with 10 min, a 7.56 s wave pulse and 400 W of power. Thus, these results could be useful to decide the incorporation of mild and emerging technologies in a meat industry line process.  相似文献   

7.
In this study, tender coconuts were treated with high-intensity ultrasound (US) for 20 min at a frequency of 20 kHz and a power of 2400 W. Compared with control group, US treated coconut water had a higher content of total soluble solid and sugar/acid ratio along with a lower pH value and conductivity, and the contents of sucrose, fructose and glucose were also higher. Results from HS-SPME/GC–MS showed that there was no significant difference in the content of volatile compounds in coconut water before and after US treatment. The activities of sugar metabolism enzymes such as sucrose phosphate synthase, sucrose synthase, acid invertase (AI) and neutral invertase were inhibited by US, of which AI had the strongest inactivation. Circular dichroism and fluorescence spectra showed that the secondary and tertiary structure of AI molecule were destroyed with the increase of US intensity and time, which was confirmed by the change of particle size distribution pattern and scanning electron microscopy. Molecular docking and molecular dynamics showed that US treatment prevented the recognition and binding of sucrose and AI molecules, thereby inhibiting the decomposition of sucrose. In conclusion, our results indicate that US can inhibit the activity of AI and maintain the sugar content to increase the quality as well as extend the shelflife of coconut water, which will bring more commercial value.  相似文献   

8.
超声在废水处理中的应用   总被引:15,自引:2,他引:15       下载免费PDF全文
超声波处理废水是一项新兴的废水处理技术,具有操作简单方便、降解速度快等优点,在处理毒性高、难降解的有机废水应用表现出广阔的前景。  相似文献   

9.
In the date syrup industry, date fruits are mixed with a suitable amount of water at a temperature greater than 50 °C for about 1 h. This condition is not sufficient for killing the micro-organisms present in the fruit. In addition, Overheating for a long time can damages nutritious materials and also changes the final product's color. Ultrasound was applied for improving the quantity and quality of the extraction, and also to overcome the health problem. In this research, the following variables were examined: date fruit/water ratio, ultrasonic intensity and temperature. The results showed that sonication under the proper conditions can lead to a higher extraction in a shorter time with a better physical quality of the product. Most importantly, the sonication significantly decreased the microbial count in comparison to the classical method. This study also confirmed the presence of anti-microbial substances in date fruit, and that ultrasonic waves can accelerate their effects.  相似文献   

10.
Innovative technologies for the pasteurization of food products have increased due to the global demand for higher-quality food products. In this regard, the current article aimed to provide an overview regarding the latest research on US application in the decontamination of fungi in food products and highlight the parameters influencing the effectiveness of this method. Therefore, the related article with inactivation of fungi and mycotoxins by ultrasound among last four years (2018–2021) by using terms such as 'mycotoxin,' 'inactivation,' 'ultrasound,' 'decontamination' among some international databases such as PubMed, Web of Science, Embase and Google Scholar“ was retrieved. Ultrasound (US) is considered a non-thermal decontamination method for food products. In US, the release of energy due to the acoustic phenomenon destroys microorganisms. This technology is advantageous as it is inexpensive, eco-friendly, and does not negatively affect food products' food structure and organoleptic properties. The influence of the US on food structure and organoleptic properties dramatically depends on the intensity and energy density applied In addition, it can preserve higher levels of ascorbic acid, lycopene, and chlorophyll in sonicated food products. The treatment conditions, including frequency, intensity, duration, temperature, and processing pressure, influence the effectiveness of decontamination. However, US displays synergistic or antagonistic effects on bacteria, yeasts, molds, and mycotoxins when combined with other types of decontamination methods such as chemical and thermal approaches. Thus, further research is needed to clarify these effects. Overall, the application of US methods in the food industry for decreasing the microbial content of food products during processing has been applied. However, the use of US with other techniques needs to be studied further.  相似文献   

11.
Ultrasonic irradiation of a water-soluble corn hull xylan fraction in neutral and alkaline aqueous medium has been found to produce significant changes in its molecular properties. Degradation is first manifested by a decrease in the large molar mass component under generation of polymer chains with about the same size as those of the main molar mass component. The latter is slightly shifted to the lower molar mass region only at stronger irradiation conditions. Ultrasonication of the xylan in neutral aqueous medium at high ultrasound power and/or long irradiation caused no significant changes in its sugar composition, primary structure and viscoelastic properties.  相似文献   

12.
Recently, a spatial compounding ultrasound imaging method was presented that utilizes a conventional 64-element phased array transducer with two unfocused pistons, each placed at one of the sides of the phased array transducer. This method is augmented here by inclusion of nonlinear filtering of the compounded images. The combined effects of the specific spatial compounding and nonlinear filtering on speckle reduction in the generated ultrasound images are studied and evaluated in two stages: First, the image quality is studied when nonlinear filtering is used as part of the spatial compounding. The study is performed by simulations using the Field II program, by processing several B-mode images of a kidney. The second stage compares the results obtained by the simulations to those obtained by in vitro laboratory experiments. Five different compounding strategies and two nonlinear filters, Gaussian and anisotropic diffusion, are investigated and evaluated in terms of image quality parameters-contrast and signal-to-noise ratio. It is shown that the combination of "averaging+nonlinear Gaussian filtering" produces the greatest improvement of image quality. When compared to a conventional phased array imaging system, the spatial compounding method that includes the conventional 64-element phased array transducer with two unfocused pistons, and employs the "averaging+nonlinear Gaussian filtering" strategy, obtains improvement in SNR that has reached 334%. Thus, though this method necessitates a somewhat wider probe, it produces significantly improved images.  相似文献   

13.
The generation, and stability of nanobubbles are of particular interest for fundamental research and have potential application in numerous fields. Several attempts were made in the literature to produce nanobubbles through acoustic cavitation. However, the generation and stability mechanisms of nanobubbles in the acoustic field are unclear. Here, we review the effect of ultrasound parameters on bulk nanobubbles and surface nanobubbles. On this basis, we discuss the proposed generation and stability mechanisms of nanobubbles from the perspective of transient and stable acoustic cavitation. Moreover, we propose some future research directions for a deeper understanding of the role of ultrasound in the generation and stability of nanobubbles.  相似文献   

14.
Ultrasounds represent an effective technology in many research fields. In sewage sludge treatment, low-frequency ultrasound, particularly at 20 kHz, are widely used for sludge disintegration before the anaerobic digestion, while in the last years novel application of high-frequency ultrasound regards the decontamination of water and wastewater through sonochemical reactions. The innovative approach presented in this paper is the treatment of sewage sludge with ultrasound at 200 kHz for obtaining efficient sludge disintegration and the removal of the linear alkylbenzenesulphonates (LAS) at the same time. Results of the sonolysis experiments showed that native LAS degradation up to 40% can be achieved with low power input in less than 1 h. The degradation pattern was different for each LAS homologue (from C10 to C13), because of their physical-chemical properties, in particular as regards the alkyl chain length. This high-frequency ultrasound irradiation resulted effective also in terms of floc disintegration and soluble organic matter release, in particular for energy inputs higher than 30,000 kJ/kg TS. The disrupting effect of the 200 kHz treatment was also evaluated by microscope analyses and determination of the extracellular polymeric substances release in the liquid phase.  相似文献   

15.
肖咏梅  赵贞  毛璞  王伟 《应用声学》2009,28(2):156-160
综述了超声辐照对于酶活性和酶催化反应的影响,以及各种超声参数对反应的影响,并展望了超声辐照在酶促反应中的应用前景。  相似文献   

16.
Although extensive research has been conducted in wood surface quality analysis, a unified approach to surface quality characterisation does not exist. Measurements of the variation in surface roughness and surface colour are used widely for the evaluation of wood surface quality. Colour is a basic visual feature for wood and wood-based products. Colour measurement is one of the quality control tests that should be carried out because the colour deviations are spotted easily by the consumers. On the other hand, a common problem faced by plywood manufacturers is panel delamination, for which a major cause is poor quality glue-bonds resulting from rough veneer. Rotary cut veneers with dimensions of 500 mm × 500 mm × 2 mm manufactured from alder (Alnus glutinosa subsp. barbata) and beech (Fagus orientalis Lipsky) logs were used as materials in this study. Veneer sheets were oven-dried in a veneer dryer at 110 °C (normal drying temperature) and 180 °C (high drying temperature) after peeling process. The surfaces of some veneers were then exposed at indoor laboratory conditions to obtain inactive wood surfaces for glue bonds, and some veneers were treated with borax, boric acid and ammonium acetate solutions. After these treatments, surface roughness and colour measurements were made on veneer surfaces. High temperature drying process caused a darkening on the surfaces of alder and beech veneers. Total colour change value (ΔE*) increased linear with increasing exposure time. Among the treatment solutions, ammonium acetate caused the biggest colour change while treatment with borax caused the lowest changes in ΔE* values. Considerable changes in surface roughness after preservative treatment did not occur on veneer surfaces. Generally, no clear changes were obtained or the values mean roughness profile (Ra) decreased slightly in Ra values after the natural inactivation process.  相似文献   

17.
This study aimed to investigate the mechanism of different treatments, namely, ultrasound (US), chlorogenic acid (CA), and ultrasound combined with chlorogenic acid (US plus CA) on the inactivation of Staphylococcus aureus planktonic and biofilm cells. Results showed that the combined treatment of US and CA exhibited remarkable synergistic antibacterial and antibiofilm effects. Scanning electron microscopy images indicated that the combined treatment of US and CA caused the most serious damage to the cell morphology. Confocal laser scanning microscopy images revealed that the combined treatment led to sharp increase and severe damage to the permeability of the cell membrane, causing the release of ATP and nucleic acids and decreasing the exopolysaccharide contents in S. aureus biofilm. Finally, the combined treatment of US plus 1% CA for 60 min inactivated S. aureus cells by 1.13 lg CFU/g on mutton. Thus, the combined treatment of US and CA had synergistic effect against S. aureus under planktonic, biofilm, and food systems.  相似文献   

18.
Nucleation, as an important stage of freezing process, can be induced by the irradiation of power ultrasound. In this study, the effect of irradiation temperature (−2 °C, −3 °C, −4 °C and −5 °C), irradiation duration (0 s, 1 s, 3 s, 5 s, 10 s or 15 s) and ultrasound intensity (0.07 W cm−2, 0.14 W cm−2, 0.25 W cm−2, 0.35 W cm−2 and 0.42 W cm−2) on the dynamic nucleation of ice in agar gel samples was studied. The samples were frozen in an ethylene glycol-water mixture (−20 °C) in an ultrasonic bath system after putting them into tubing vials. Results indicated that ultrasound irradiation is able to initiate nucleation at different supercooled temperatures (from −5 °C to −2 °C) in agar gel if optimum intensity and duration of ultrasound were chosen. Evaluation of the effect of 0.25 W cm−2 ultrasound intensity and different durations of ultrasound application on agar gels showed that 1 s was not long enough to induce nucleation, 3 s induced the nucleation repeatedly but longer irradiation durations resulted in the generation of heat and therefore nucleation was postponed. Investigation of the effect of ultrasound intensity revealed that higher intensities of ultrasound were effective when a shorter period of irradiation was used, while lower intensities only resulted in nucleation when a longer irradiation time was applied. In addition to this, higher intensities were not effective at longer irradiation times due to the heat generated in the samples by the heating effect of ultrasound. In conclusion, the use of ultrasound as a means to control the crystallization process offers promising application in freezing of solid foods, however, optimum conditions should be selected.  相似文献   

19.
The uses of ultrasound in food technology   总被引:23,自引:0,他引:23  
The same physical and mechanical effects which have been utilised in sonochemistry, i.e. strong shear forces, particle fragmentation, increased mass and heat transfer, nucleation of seedling, have been applied to food processing. Examples are quoted from various applications where power ultrasound has been used to influence the development of living cells, improve sterilisation and effect enzyme activity. Typically ultrasound can be used as a processing aid in extraction, crystallisation, freezing, emulsification, filtration and drying.  相似文献   

20.
Ultrasound (US) has been suggested for many whey processing applications. This study examined the effects of ultrasound treatment on the oxidation of lipids in Cheddar cheese whey. Freshly pasteurized whey (0.86 L) was ultrasonicated in a contained environment at the same range of frequencies and energies for 10 and 30 min at 37 °C. The US reactor used was characterized by measuring the generation of free radicals in deionized water at different frequencies (20–2000 kHz) and specific energies (8.0–390 kJ/kg). Polar lipid (PL), free and bound fatty acids and lipid oxidation derived compounds were identified and quantified before and after US processing using high performance liquid chromatography equipped with an evaporative light scattering detector (HPLC–ELSD), methylation followed by gas chromatography flame ionized detector (GC-FID) and solid phase micro-extraction gas chromatography mass spectrometry (SPME-GCMS), respectively. The highest concentration of hydroxyl radical formation in the sonicated whey was found between 400 and 1000 kHz. There were no changes in phospholipid composition after US processing at 20, 400, 1000 and 2000 kHz compared to non-sonicated samples. Lipid oxidation volatile compounds were detected in both non-sonicated and sonicated whey. Lipid oxidation was not promoted at any tested frequency or specific energy. Free fatty acid concentration was not affected by US treatment per se. Results revealed that US can be utilized in whey processing applications with no negative impact on whey lipid chemistry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号