首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ultrasound assisted purification of asparagus polyphenols by adsorption and desorption on the macroporous resins was investigated. The ultrasound within the selected intensities (12–120 W) and temperatures (25–35 °C) increased the adsorption and desorption capacities of asparagus polyphenols on D101 resins. Higher ultrasound intensity (120 W) and lower temperature (25 °C) benefited the adsorption process and the adsorption capacity of total polyphenols after ultrasound was 3.95 mg/g, which was 2 times than that obtained after shaking at 120 rpm. Meanwhile, ultrasound can significantly shorten the equilibrium time and the adsorption process of asparagus polyphenols could be well described by Pseudo-second order model and Freundlich model. Stereoscopic microscope was first used to investigate the microstructure characterization of resins, indicating that ultrasound mainly enhanced the surface roughness of resins. Interestingly, rutin possessed the highest adsorption capacities and ferulic acid had the highest the desorption capacities among the studied individual polyphenols. The obtained results evidenced on a progressive insight of application of ultrasound assisted resins for purification of asparagus polyphenols.  相似文献   

2.
This study aimed at investigating the performances of air drying of blackberries assisted by airborne ultrasound and contact ultrasound. The drying experiments were conducted in a self-designed dryer coupled with a 20-kHz ultrasound probe. A numerical model for unsteady heat and mass transfer considering temperature dependent diffusivity, shrinkage pattern and input ultrasonic energies were applied to explore the drying mechanism, while the energy consumption and quality were analyzed experimentally. Generally, both airborne ultrasound and contact ultrasound accelerated the drying process, reduced the energy consumption and enhanced the retentions of blackberry anthocyanins and organic acids in comparison to air drying alone. At the same input ultrasound intensity level, blackberries received more ultrasound energies under contact sonication (0.299 W) than airborne sonication (0.245 W), thus avoiding the attenuation of ultrasonic energies by air. The modeling results revealed that contact ultrasound was more capable than airborne ultrasound to intensify the inner moisture diffusion and heat conduction, as well as surface exchange of heat and moisture with air. During air drying, contact ultrasound treatment eliminated the gradients of temperature and moisture inside blackberry easier than airborne ultrasound, leading to more homogenous distributions. Moreover, the total energy consumption under air drying with contact ultrasound assistance was 27.0% lower than that with airborne ultrasound assistance. Besides, blackberries dehydrated by contact ultrasound contained more anthocyanins and organic acids than those dried by airborne ultrasound, implying a higher quality. Overall, direct contact sonication can well benefit blackberry drying in both energy and quality aspects.  相似文献   

3.
The present study was aimed to removal of Cu(II) ions from aqueous solution by ultrasound-assisted adsorption onto the granular activated carbon obtained from hazelnut shells. The attention was focused on modeling the equilibrium and kinetics of Cu(II) adsorption onto the granular activated carbon. The granular activated carbon was prepared from ground dried hazelnut shells by simultaneous carbonization and activation by water steam at 950 °C for 2 h. Adsorption isotherm data were better fitted by the Langmuir model than the Freundlich model in both the absence and the presence of ultrasound. The maximum adsorption capacity of the adsorbent for Cu(II), calculated from the Langmuir isotherms, in the presence of ultrasound (3.77 mmol/g) is greater than that in the absence of ultrasound (3.14 mmol/g). The adsorption process in the absence and the presence of ultrasound obeyed to the pseudo second-order kinetics. The removal of Cu(II) ions was higher in the presence of ultrasound than in its absence, but ultrasound reduced the rate constant. The intraparticular diffusion model indicated that adsorption of Cu(II) ions on the granular activated carbon was diffusion controlled as well as that ultrasound promoted intraparticular diffusion.  相似文献   

4.
The present work deals with the removal of Brilliant Green dye from wastewater using a poly(acrylic acid) hydrogel composite (PAA-K hydrogel) prepared by incorporation of kaoline clay. The composite has been synthesized using ultrasound assisted polymerization process as well as the conventional process, with an objective of showing the better effectiveness of ultrasound assisted synthesis. It has been observed that the hydrogel prepared by ultrasound assisted polymerization process showed better results. The optimum conditions for the removal of dye are pH of 7, temperature of 35 °C, initial dye concentration of 30 mg/L and hydrogel loading of 1 g. The extent of removal of dye increased with an increase in the contact time and initial dye concentration. A pseudo-second-order kinetic model has been developed to explain the adsorption kinetics of dye on the PAA-K hydrogel. Thermodynamic and kinetic parameters indicate that the adsorption process is spontaneous in nature and the PAA-K hydrogel prepared by ultrasound process is a promising adsorbent compared to conventional process. The obtained adsorption data has also been fitted into commonly used adsorption isotherms and it has been found that Freundlich as well as Langmuir adsorption isotherm models fits well to the experimental results.  相似文献   

5.
Ultrasound is a green technology for intensifying enzymatic reactions. In this study, an ultrasonic water bath with equipment parameters of 28 kHz, 1750.1 W/m2, 60% duty cycle was used to assist the synthesis of butyric acid-lauric acid designer lipid (BLDL), which was catalyzed by Lipozyme 435. A convincing three-layer feed-forward artificial neural network (ANN) model was established (R2 = 0.949, RMSE = 4.759, ADD = 7.329) to accurately predict the optimal parameters combination, which was described as 13.72 mL reaction volume, 15.49% enzyme loading, 0.253 substrate molar ratio (tributyrin/lauric acid), 56.58 °C reaction temperature and 120 min reaction time. The ultrasonic assistance increased actual butyric acid conversion rate by 11.38%, and also enhanced the consumption rate of tributyrin and lauric acid during the reaction. Meanwhile, the esterification activity of Lipozyme 435 was enhanced and its effectiveness up to 6 cycles. Structurally, ultrasound assistance significantly disrupted the secondary structure of the Lipozyme 435: reduced the content of α-helices, increased the content of β-sheet and β-turn. In addition, sonication caused an increase in crevice and micro-damage on the surface of the immobilized enzyme. In conclusion, low-intensity ultrasound at 28 kHz improved the synthesis efficiency of BLDL, which was scientifically predicted by ANN model, and the change of enzyme structure may be the vital reason for ultrasound enhanced reaction. However, the effect of ultrasound on immobilized enzymes’ activity needs to be further explored.  相似文献   

6.
The thin-layer drying behavior of the municipal sewage sludge in a laboratory-scale hot air forced convective dryer assisted with air-borne ultrasound was investigated in between 70 and 130 °C hot air temperatures. The drying kinetics in the convective process alone were compared to that for ultrasound-assist process at three ultrasound powers (30, 90, 150 W). The average drying rates within whole drying temperature range at ultrasound powers of 30, 90 and 150 W increased by about 22.6%, 27.8% and 32.2% compared with the convective drying alone (without ultrasound). As the temperature increasing from 70 °C to 130 °C, there were maximum increasing ratios for the effective moisture diffusivities of the sewage sludge in both falling rate periods at ultrasonic power of 30 W in comparison with other two high powers. In between the ultrasound powers of 0 and 30 W, the effect of the power on the drying rate was significant, while its effect was not obvious over 30 W. Therefore, the low ultrasonic power can be just set in the drying process. The values of the apparent activation energy in the first falling rate period were down from 13.52 to 12.78 kJ mol−1, and from 17.21 to 15.10 kJ mol−1 for the second falling rate period with increasing the ultrasonic power from 30 to 150 W. The values of the apparent activation energy in two falling rate periods with the ultrasound-assist were less than that for the hot air convective drying alone.  相似文献   

7.
The ultrasound-assisted extraction process of phenolics including anthocyanins from wine lees was modeled and optimized in this research. An ultrasound bath system with the frequency of 40 kHz was used and the acoustic energy density during extraction was identified to 48 W/L. The effects of extraction time, extraction temperature, solvent-to-solid ratio and the solvent composition on the extraction yields of total phenolics and total anthocyanins were taken into account. The extraction process was simulated and optimized by means of artificial neural network (ANN) and genetic algorithm (GA). The constructed ANN models were accurate to predict the extraction yields of both total phenolics and total anthocyanins according to the statistical analysis. Meanwhile, the input space of the ANN models was optimized by GA, so as to maximize the extraction yields. Under the optimal conditions, the experimental yields of total phenolics and total anthocyanins were 58.76 and 6.69 mg/g, respectively, which agreed with the predicted values. Furthermore, more amounts of total phenolics and total anthocyanins were extracted by ultrasound at the optimal conditions than by conventional maceration.On the other hand, the stability of phenolics in the liquid extracts obtained from ultrasound-assisted extraction during storage was evaluated. After 30-day storage, the total phenolic contents in extracts stored at 4 °C and 20 °C decreased by 12.5% and 12.1%, respectively. Moreover, anthocyanins were more stable at 4 °C while tartaric esters and flavonols exhibited a better stability at 20 °C. Overall, the loss of phenolics during storage found in this study could be acceptable.  相似文献   

8.
The main goal of this work is to develop a novel and environmental-friendly technology for cotton bleaching with reduced processing costs. This work exploits a combined laccase–hydrogen peroxide process assisted by ultrasound. For this purpose, specific reactors were studied, namely ultrasonic power generator type K8 (850 kHz) and ultrasonic bath equipment Ultrasonic cleaner USC600TH (45 kHz). The optimal operating conditions for bleaching were chosen considering the highest levels of hydroxyl radical production and the lowest energy input. The capacity to produce hydroxyl radicals by hydrodynamic cavitation was also assessed in two homogenizers, EmulsiFlex®-C3 and APV-2000. Laccase nanoemulsions were produced by high pressure homogenization using BSA (bovine serum albumin) as emulsifier. The bleaching efficiency of these formulations was tested and the results showed higher whiteness values when compared to free laccase. The combination of laccase–hydrogen peroxide process with ultrasound energy produced higher whiteness levels than those obtained by conventional methods. The amount of hydrogen peroxide was reduced 50% as well as the energy consumption in terms of temperature (reduction of 40 °C) and operating time (reduction of 90 min).  相似文献   

9.
Piceid, a naturally occurring derivative of resveratrol found in many plants, has recently been considered as a potential nutraceutical. However, its poorly water-soluble property could cause a coupled problem of biological activities concerning drug dispersion and absorption in human body, which is still unsolved now. Liposome, a well-known aqueous carrier for water-insoluble ingredients, is commonly applied in drug delivery systems. In this study, a feasible approach for solving the problem is that the targeted piceid was encapsulated into a liposomal formula as aqueous substrate to overcome its poor water-solubility. The encapsulation process was assisted by ultrasound, with investigation of lipid content, ultrasound power and ultrasound time, for controlling encapsulation efficiency (E.E%), absolute loading (A.L%) and particle size (PS). Moreover, both RSM and ANN methodologies were further applied to optimize the ultrasound-assisted encapsulation process. The data indicated that the most important effects on the encapsulation performance were found to be of lipid content followed by ultrasound time and ultrasound power. The maximum E.E% (75.82%) and A.L% (2.37%) were exhibited by ultrasound assistance with the parameters of 160 mg lipid content, ultrasound time for 24 min and ultrasound power of 90 W. By methodological aspects of processing, the predicted E.E% and A.L% were respectively in good agreement with the experimental results for both RSM and ANN. Moreover, RMSE, R2 and AAD statistics were further used to compare the prediction abilities of RSM and ANN based on the validation data set. The results indicated that the prediction accuracy of ANN was better than that of RSM. In conclusion, ultrasound-assisted liposome encapsulation can be an efficient strategy for producing well-soluble/dispersed piceid, which could be further applied to promote human health by increased efficiency of biological absorption, and the process of ultrasound-mediated liposome encapsulation can be well established by a methodological approach using either RSM or ANN, but it is worth mentioning that the ANN model used here showed the superiority over RSM for predicting and optimizing encapsulation.  相似文献   

10.
The current work deals with the value addition of lactose by transforming into hydrolyzed lactose syrup containing glucose and galactose in major proportion using the novel approach of ultrasound assisted acid catalyzed lactose hydrolysis. The hydrolysis of lactose was performed in ultrasonic bath (33 kHz) at 50% duty cycle at different temperatures as 65 °C and 70 °C and two different hydrochloric acid (HCl) concentrations as 2.5 N and 3 N. It was observed that acid concentration, temperature and ultrasonic treatment were the major factors in deciding the time required to achieve ∼90% hydrolysis. The ultrasonic assisted approach resulted in reduction in the reaction time and the extent of intensification was established to be dependent on the temperature, acid concentration and time of ultrasonic exposure. It was observed that the maximum process intensification obtained by introduction of ultrasound in the lactose hydrolysis process performed at 70 °C and 3 N HCl was reduction in the required time for ∼90% hydrolysis from 4 h (without the presence of ultrasound) to 3 h. The scale-up study was also performed using an ultrasonic bath with longitudinal horn (36 kHz as operating frequency) at 50% duty cycle, optimized temperature of 70 °C and acid concentration of 3 N. It was observed that the reaction was faster in the presence of ultrasound and stirring by axial impeller at rpm of 225 ± 25. The time required to complete ∼90% of hydrolysis remained almost the same as observed for small scale study on ultrasonic bath (33 kHz) at 50% duty cycle. The use of recovered lactose from whey samples instead of pure lactose did not result in any significant changes in the progress of hydrolysis, confirming the efficacy of the selected approach. Overall, the work has presented a novel ultrasound assisted approach for intensified lactose hydrolysis.  相似文献   

11.
Copper is one of the most toxic heavy metals having significant effects on the living organisms and hence effective removal of copper from waste water is crucial. The current work investigates the application of activated watermelon shell based biosorbent for the removal of copper from aqueous solution. The effect of activation using calcium hydroxide and citric acid as well as the effect of operating parameters like contact time, adsorbent dosage, temperature, pH, initial concentration and ultrasonic power on the extent of removal has been investigated. Experiments performed in the presence of ultrasound to investigate the degree of intensification as compared to the conventional agitation based treatment revealed that the adsorption rate significantly increases in the presence of ultrasound and also the time required for reaching the equilibrium reduces from 60 min in conventional approach to only 20 min in the presence of ultrasound. The extent of adsorption of Cu(II) on adsorbents was found to increase with an increase in the operating pH till an optimum value of 5. The extent of adsorption also increased with a decrease in the initial concentration and particle size as well as with an increase in ultrasonic power till an optimum. Kinetics and isotherm study revealed that all the experimental data was found to best fit the pseudo second order kinetics and Langmuir adsorption isotherm model respectively. Maximum adsorption capacity was found to be 31.25 mg/g for watermelon treated with calcium hydroxide and 27.027 mg/g for watermelon treated with citric acid. Overall present study established that activated watermelon is an environmentally friendly, low cost and highly efficient biosorbent that can be successfully applied for the removal of copper from aqueous solution with intensification benefits based on the ultrasound assisted approach.  相似文献   

12.
A novel drying technique using a combination of ultrasound and vacuum dehydration was developed to shorten the drying time and improve the quality of carrot slices. Carrot slices were dried with ultrasonic vacuum (USV) drying and vacuum drying at 65 °C and 75 °C. The drying rate was significantly influenced by the drying techniques and temperatures. Compared with vacuum drying, USV drying resulted in a 41–53% decrease in the drying time. The drying time for the USV and vacuum drying techniques at 75 °C was determined to be 140 and 340 min for carrot slices, respectively. The rehydration potential, nutritional value (retention of β-carotene and ascorbic acid), color, and textural properties of USV-dried carrot slices are predominately better compared to vacuum-dried carrot slices. Moreover, lower energy consumption was used in the USV technique. The drying data (time versus moisture ratio) were successfully fitted to Wang and Singh model.  相似文献   

13.
This paper investigates the effects of ultrasound (UTS) energy at different temperatures on the zeolitization of aluminosilicate constituents of coal fly ash. UTS energy irradiated directly into the reaction mixture utilizing a probe immersed into the reaction mixture, unlike previously reported works that have used UTS baths. Controlled synthesis was also conducted at constant stirring and at the same temperatures using conventional heating. The precursor reaction solution was obtained by first fusing the coal fly ash with sodium hydroxide at 550 °C followed by dissolution in water and filtration. The synthesized samples were characterized by XRF, XRD, SEM and TGA. The crystallinity of crystals produced with UTS assisted conversion compared to conventional conversion at 85 °C was twice as high. UTS energy also reduced the induction time from 60 min to 40 min and from 80 min to 60 min for reaction temperatures of 95 °C and 85 °C, respectively. Prolonging the UTS irradiation at 95 °C resulted in the conversion of zeolite-A crystals to hydroxysodalite, which is a more stable zeolitic phase. It was found that at 85 °C coupled with ultrasound energy produced the best crystalline structure with a pure single phase of zeolite-A. It has been shown that crystallization using UTS energy can produce zeolitic crystals at lower temperatures and within 1 h, dramatically cutting the synthesis time of zeolite.  相似文献   

14.
The thermodynamics and kinetics of traditional and simultaneous dual frequency energy-gathered ultrasound (SDFU) assisted enzymolysis of potato protein were investigated to get the knowledge of the mechanisms on the SDFU’s promoting efficiency during enzymolysis. The concentration of potato protein hydrolysate and parameters of thermodynamic and kinetic during traditional and SDFU assisted enzymolysis were determined. The results showed that potato protein hydrolysate concentration of SDFU assisted enzymolysis was higher than traditional enzymolysis at the hydrolysis time of 60 min (p < 0.05) whereas not significantly different at 120 min (p > 0.05). In some cases, SDFU assisted enzymolysis took less hydrolysis time than traditional enzymolysis when the similar conversion rates of potato protein were obtained. The thermodynamic papameters including the energy of activation (Ea), enthalpy of activation (△H), entropy of activation (△S) were reduced by ultrasound pretreatment while Gibbs free energy of activation (△G) increased little (1.6%). Also, kinetic papameters including Michaelis constant (KM) and catalytic rate constant (kcat) decreased by ultrasound pretreatment. On the contrary, reaction rate constants (k) of SDFU assisted enzymolysis were higher than that of traditional enzymolysis (p < 0.05). It was indicated that the efficiency of SDFU assisted enzymolysis was higher than traditional enzymolysis in a limited time. The higher efficiency of SDFU assisted enzymolysis was related with the decrease of Ea and KM by lowering the energy barrier between ground and active state and increasing affinity between substrate and enzyme.  相似文献   

15.
DDG is a major source of protein, calcium, phosphorus, and sulfur is arguably the most important byproduct of the bioethanol industry with increasing demand over the past few years. Reducing energy consumption in the DDG production process and energy recovery from DDG is vital for sustainable bioethanol productions. In this paper, a novel direct-contact multi-frequency, multimode, and modulated (MMM) ultrasonic dryer (US) was developed for the first time and has been applied in dehydration of wet distillers’ grain (WDG). Ultrasonic drying (US) was combined with a convective airflow (HA) at different temperatures of 25 (room temperature), 50 and 70 °C to evaluate the impact of US, HA, and US + HA on drying kinetics, activation energy, chemical compositions, microstructure, and color of DDG. Semi-empirical kinetic models were developed and evaluating drying performances showed that the application of ultrasound significantly enhanced the drying rate and decreased the drying time (by 46%), especially at low drying temperatures. The activation energy for moisture removal in the presence of ultrasound was about 50% of that without ultrasound. The final dried distillers' grains product processed by ultrasonic drying had a brighter color, a higher available protein, a higher digestible protein (the lowest acid detergent insoluble crude protein), and a better surface profile with no compromise on minerals and fiber contents.  相似文献   

16.
Ultrasound assisted aqueous two-phase extraction of polysaccharides from Cornus officinalis fruit was modeled by response surface methodology (RSM) and artificial neural network (ANN), and optimized using genetic algorithm coupled with ANN (GA-ANN). Statistical analysis showed that the models obtained by RSM and ANN could accurately predict the Cornus officinalis polysaccharides (COPs) yield. However, ANN prediction was more accurate than RSM. The optimum extraction parameters to achieve the highest COPs yield (7.85 ± 0.09)% was obtained at the ultrasound power of 350 W, extraction temperature of 51 ℃, liquid-to-solid ratio of 17 mL/g, and extraction time of 38 min. Subsequently, the crude COPs were further purified via DEAE-52 and Sephadex G-100 chromatography to obtain a homogenous fraction (COPs-4-SG, 33.64 kDa) that contained galacturonic acid, arabinose, mannose, glucose, and galactose in a molar ratio of 34.82:14.19:6.75:13.48:12.26. The structure of COPs-4-SG was also characterized with UV–vis, fourier-transform infrared spectroscopy (FT–IR), atomic force microscopy (AFM), scanning electron microscopy (SEM), Congo-red test, and circular dichroism (CD). The findings provide a feasible way for the extraction, purification, and optimization of polysaccharides from plant resources  相似文献   

17.
The effects of low-frequency ultrasonic pre-treatment in water/oil medium simulated system on the improved processing efficiency and quality of microwave-assisted vacuum fried potato chips were investigated. The water medium system (distilled water and 5% NaCl osmotic solution) and oil medium system (90 °C) were designed with different power levels of ultrasound to simulate the ultrasonic conditions. Results showed that the changes of moisture content, water loss, solid gain and dielectric properties of potato slices were facilitated by the ultrasonic treatment. LF-NMR analysis showed the binding force between the moisture and structure in the material was significantly (p < 0.05) weakened. The changes become greater with the increase of ultrasonic power levels. Microscopic channels and disruptions were induced on the microstructure by the ultrasonic treatment. The effective moisture diffusivity of vacuum fried (VF) potato chips was increased by about 56.2%-67.0% and 53.9% with the combination of microwave energy and the ultrasonic pre-treatment in water and oil medium simulated system, respectively. The oil uptake, hardness, shrinkage, total color change and water activity of vacuum fried samples were significantly (p < 0.05) decreased by the assist of microwave energy combined ultrasonic pre-treatment.  相似文献   

18.
The present study the ultrasound assisted adsorption of dyes in single system onto Fe3O4 magnetite nanoparticles loaded on activated carbon (Fe3O4-MNPs-AC) was described following characterization and identification of this adsorbent by conventional techniques likes field emission scanning electron microscopy, transmission electron microscopy, particle-size distribution, X-ray diffraction and Fourier transform infrared spectroscopy. A central composite design in conjunction with a response surface methodology according to f-test and t-test for recognition and judgment about significant term led to construction of quadratic model which represent relation among responses and effective terms. This model has unique ability to predict adsorption data behavior over a large space around central and optimum point. Accordingly Optimum conditions for well and quantitative removal of present dyes was obtained best operation and conditions: initial SY, MB and EB dyes concentration of 15, 15 and 25 mg L−1, 4.0, 6.0 and 5.0 of pH, 360, 360 and 240 s sonication time and 0.04, 0.03 and 0.032 g of Fe3O4-MNPs-AC. Replication of similar experiment (N = 5) guide that average removal percentage of SY, MB and EB were found to be 96.63 ± 2.86%, 98.12 ± 1.67% and 99.65 ± 1.21% respectively. Good agreement and closeness of Predicted and experimental result and high adsorption capacity of dyes in short time strongly confirm high suitability of present method for waste water treatment, while easy separation of present nanoparticle and its good regeneration all support good applicability of Fe3O4-MNPs-AC for waste water treatment. The kinetic study can be represented by combination of pseudo second-order and intraparticle diffusion. The obtained maximum adsorption capacities correspond to Langmuir as best model for representation of experimental data correspond to dyes adsorption onto Fe3O4-MNPs-AC were 76.37, 78.76 and 102.00 mg g−1 for SY, MB and EB, respectively. In addition, the performance comparison of ultrasound-assisted, magnetic stirrer assisted and vortex assisted adsorption methods demonstrates that ultrasound is an effective and good choice for facilitation of adsorption process via. Compromise of simple and facile diffusion.  相似文献   

19.
Mesoporous nanocrystalline NiO-Al2O3 powders with high surface area were synthesized via ultrasound assisted co-precipitation method and the potential of the selected samples as catalyst was investigated in dry reforming reaction for preparation of synthesis gas. The prepared samples were characterized by N2 adsorption (BET), X-ray diffraction (XRD), Temperature programmed reduction and oxidation (TPR, TPO) and scanning electron microscopy (SEM) techniques. The effects of pH, power of ultrasound irradiation, aging time and calcination temperature on the textural properties of the catalysts were studied. The sample prepared under specified conditions (pH10, 70 W, without aging time and calcined at 600 °C) exhibited the highest surface area (249.7 m2 g−1). This catalyst was calcined at different temperature and employed in dry reforming of methane and the catalytic results were compared with those obtained over the catalysts prepared by impregnation and co-precipitation methods. The results showed that the catalyst prepared by ultrasound assisted co-precipitation method exhibited higher activity and stability with lower degree of carbon formation compared to catalysts prepared by co-precipitation and impregnation methods.  相似文献   

20.
This study was planned to recycle calcium and the phosphorus-rich Nile tilapia fish scale biowaste into nano-hydroxyapatite (FHAP), using ultrasonic-assisted extraction of calcium and phosphorus from fish scales, which was optimized in term of extraction time, acid concentration, extraction temperature, and ultrasonic power. These two elements were determined simultaneously by inductively coupled plasma atomic emission spectrometry and the FHAP phase was formed upon addition of the extracted element solution in alkaline medium using homogenous precipitation assisted with ultrasound energy. The FHAP adsorbent was characterized by x-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller. A combination of FHAP and the ultrasonic method was then used to remove Hg2+ from aqueous solution. Four significant variables affecting Hg2+ removal, namely, adsorbent dosage, pH, ultrasonic power, and adsorption time, were studied. The results exhibited that the optimal conditions for maximizing the removal of Hg2+ were 0.02 g adsorbent dosage, pH 8, 0.4 kW ultrasonic power, 20 min adsorption time, and 30 °C adsorption temperature. The sorption mechanism of Hg2+ was revealed by isotherm modeling, indicating that FHAP adsorbent has a potential for Hg2+ removal in aqueous media with the maximum adsorption capacity being 227.27 mg g−1. This adsorption behavior is in agreement with the Langmuir model as reflected by a satisfactory R2 value of 0.9967, when the kinetics data were fitted with pseudo-second-order. Therefore, the FHAP could be an alternative adsorbent for the ultrasonic-assisted removal of Hg2+ at very high efficiency and within a very short period of time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号