首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Luminescence and scintillation properties of newly discovered bromo-elpasolites Cs2NaGdBr6: Ce3+ (CNGB: Ce3+) are presented. Single crystals of CNGB: Ce3+ with dimensions up to Ø7×10 mm3 are successfully grown by the Bridgman technique. X-ray excited luminescence measurements of the grown samples showed a broad emission band in the wavelength range from 365 to 470 nm. It offered an energy resolution of 5.1% (FWHM) at 662 keV for 10% Ce sample. The light output of the investigated samples increases along with cerium concentration. A maximum light yield of ~36,800 ph/MeV is measured for the 10% Ce sample crystal. Under γ-ray excitation, CNGB: Ce3+ crystals showed three exponential decay time components. The scintillation mechanism in the sample crystal is presented.  相似文献   

2.
Ce3+ doped ABaPO4 (A=Li, Na, K) phosphors were prepared by conventional high temperature solid-state reaction. The phosphors were investigated by XRD, photoluminescence excitation and emission spectra, and luminescence decay curves. The five 5d levels corresponding to the 4f1→4f05d1 transition of Ce3+ ions were identified. The spectroscopic parameters, e.g., the 5d barycenter, the crystal-field splitting, and the Stokes shift, were discussed. LiBaPO4:Ce3+ phosphor could be efficiently excited by the near-UV lights (330–420 nm) and showed a broad emission band in the range of 430–620 nm with the maximum wavelength at 468 nm. In contrast, Ce3+-doped NaBaPO4 and KBaPO4 showed only excitation bands in a limited UV region (230–370 nm) and have blue emission at 385 nm and 416 nm, respectively. The temperature quenching of luminescence and the chromaticity coordinates were reported. The luminescence properties were discussed by analyzing the crystal structure and the local surroundings of Ce3+ ions on the Ba2+ sites.  相似文献   

3.
In this work, the Ce3+ doped gadolinium-calcium-silicaborate glass scintillators of the composition ratio 25Gd2O3:10CaO:10SiO2:(55−x)B2O3:xCeF3, have been fabricated by using the melt-quenching technique. The doping concentration of the Ce3+ was varied from 0.05 mol% to 2.5 mol%. The 4f-5d transition of the Ce3+ allowed scintillation with a fast decay time. The absorption spectrum, X-ray induced emission spectrum, photo luminescence spectrum, laser luminescence spectrum and decay time of the scintillators were measured for studying the luminescence properties. From the X-ray induced emission spectrum result, we checked the trend between doping concentration and light yield. The laser induced luminescence spectrum was measured while changing the temperature from 300 K to 10 K. We also measured the decay time by using the laser excitation of the 0.15 mol% Ce3+ doped glass scintillator.  相似文献   

4.
A new red-emitting phosphor Ca9Lu(PO4)7:Ce3+, Mn2+ has been synthesized by solid-state reaction, and its luminescence properties have been investigated. The broad red emission peaked at 645 nm of Mn2+ is greatly enhanced by the sensitizer Ce3+ due to efficient energy transfer from Ce3+ to Mn2+. The energy transfer was demonstrated to belong to a resonant type via a dipole–quadrupole mechanism. The critical distance for Ce3+→Mn2+ energy transfer was calculated to be 15.04 Å by concentration quenching method. Preliminary results indicate that the phosphor might be a promising red phosphor for UV-based white LEDs.  相似文献   

5.
Process compatible high-k dielectric thin films are one of the key solutions to develop high performance metal–insulator–metal (MIM) structures for future microelectronic devices. Engineered cerium–aluminate (CexAl2–xO3) thin films were deposited on titanium nitride metal electrodes by electron-beam co-evaporation of ceria and alumina in a molecular beam deposition chamber. X-ray photoelectron spectroscopy clearly reveals that Ce cations can be stabilized in the 3+ valence state in CexAl2–xO3 up to x = 0.7 by accommodation in the alumina host matrix. Higher Ce content was observed to result in cerium dioxide segregation in cerium aluminate matrix, probably due to the chemical tendency of Ce cations to exist rather in the 4+ than in the 3+ state. Electrical characterization of the X-ray amorphous Ce0.7Al1.3O3 films reveals a dielectric constant value of about 11 and leakage current lower than 10?4 A/cm2. No parasitic low-k interface formation between the high-k Ce0.7Al1.3O3 film and the TiN metal electrode is detected.  相似文献   

6.
The luminescence properties of calcium orthoborate Ca3(BO3)2 doped with cerium are studied upon x-ray (~30 keV) and VUV (3.5–15 eV) synchrotron excitation. The emission bands peaked at 392 and 420 nm are attributed to interconfigurational transitions of Ce3+ ions. The short-wavelength emission band at 340 nm is caused by radiative decay of exciton-like states. The fundamental absorption edge of Ca3(BO3)2 is found to be near 7.1 eV. Based on thermoluminescence data and other information, the behavior of defects in Ca3(BO3)2:Ce3+ is studied.  相似文献   

7.
Ce3+ and Dy3+-doped LiAl5O8 were synthesized in the present study. The luminescence properties of Ce3+ and Dy3+, and the energy transfer from Ce3+ to Dy3+ were investigated. The Ce3+ species in LiAl5O8 emit one broad band that peaks at 351 nm under the excitation of ultraviolet light, which is attributed to the 5d–4f transitions of Ce3+. The luminescence of Dy3+ in singly doped LiAl5O8 can not be detected due to its low oscillator strength. However, Dy3+ emit intense blue (477 nm) and yellow (569 nm) light after the introduction of Ce3+. This phenomenon demonstrates that there exists effective energy transfer from Ce3+ to Dy3+, which occurs because the emission spectrum of Ce3+ perfectly overlays the excitation spectrum of Dy3+. The energy transfer from Ce3+ to Dy3+ is performed through dipole–dipole interactions. The experimental results show that LiAl5O8 co-doped with Ce3+ and Dy3+ can be a potential two-band (blue and yellow) phosphor.  相似文献   

8.
Excitation of YAG:Ce3+ crystals and nanocrystals was performed at λexc=473–584 nm over a wide temperature range. It was observed that the luminescence of both nano- and single-crystal YAG:Ce samples is efficiently excited with photon energies well below the Ce3+ absorption band and at least 1650 cm?1 below the ZPL of the 4f1(2F5/2)?4f05d1 transition, located at 489 nm. The studies of Ce3+ fluorescence spectra as a function of temperature and excitation wavelength and of their temporal evolution point to the role of phonon-assisted nonradiative energy transfer between different groups of Ce3+ centers in the excitation mechanism.  相似文献   

9.
The spectroscopic behavior of Sm3+ ions is investigated in monoactivated and coactivated (with cerium) glasses obtained by the direct sol-gel-glass transition. It is shown that the majority of the Sm3+ ions form optical centers of the same type, whose luminescence spectral characteristics depend weakly on the concentration of the activator and the technique used to introduce it. Complex centers, including Sm3+ and Ce4+ ions bound by bridge oxygen, are also formed in the coactivated glass during the pore nucleation stage. The Sm3+ ions in these centers are characterized on the average by higher local symmetry, the efficient enhancement of luminescence by photoreduced (Ce4+) ions, and its extinction by Ce-containing clusters. Fiz. Tverd. Tela (St. Petersburg) 40, 458–465 (March 1998)  相似文献   

10.
This paper reports the results of a time-resolved photoluminescence and energy transfer processes study in Ce3+ doped SrAlF5 single crystals. Several Ce3+ centers emitting near 4 eV due to 5d-4f transitions of Ce3+ ions substituting for Sr2+ in non-equivalent lattice sites were identified. The lifetime of these transitions is in the range of 25–35 ns under intra-center excitation in the energy region of 4–7 eV at T = 10 K. An effective energy transfer from lattice defects to dopant ions was revealed in the – 7–11 eV energy range. Both direct and indirect excitation channels are efficient at room temperature. Excitons bound to dopants are revealed at T = 10 K under excitation in the fundamental absorption region above 11 eV, as well as radiative decay of self-trapped excitons resulting in luminescence near 3 eV.  相似文献   

11.
X-ray excited emission spectra, photoluminescence excitation and emission spectra, optical reflectivity spectra, and pulsed X-ray and optical excited luminescence decay measurements are reported for cerium-doped La2Hf2O7 powders prepared by solid state synthesis. A broad luminescence associated with oxygen vacancies is observed in the region 350–750 nm with a peak around 460 nm. The photoluminescence spectra and the number of oxygen vacancies vary for samples annealed in oxidizing or reducing atmospheres and with the temperature of the synthesis process. Increasing the cerium concentration reduces the oxygen-vacancy-related emission due to the presence of Ce4+. First principles calculations predict that Ce4+ can substitute in Hf sites; this is confirmed from the optical reflectivity spectrum of cerium-doped La2Hf2O7. Photoluminescence excitation and emission spectra characteristic of Ce4+ charge transfer transitions and possibly Ce3+ are also observed. Although trivalent cerium may be present, no emission observed from cerium-doped La2Hf2O7 can be attributed to Ce3+ in La sites.  相似文献   

12.
Ce3+-doped silica was synthesized by sol-gel technique. The absorption band at 252 nm of Ce3+-doped silica is close to the main absorption band of Ce(NO3)3 solution. Three different luminescence bands were observed in the samples annealed at temperatures from 100 to 1200 °C, and the intensity of these luminescence bands changed with the alteration of the heat-treating temperatures. In addition to two well-known main luminescence bands of 4f-5d transition of Ce3+ with the wavelength at 357 and 450 nm, a rarely reported luminescent band with the wavelength at 344 nm was also observed, which was attributed to some kind of oxygen-related defects of silica.  相似文献   

13.
《Current Applied Physics》2020,20(6):765-772
Ho3+/Ce3+ co-doped K2YbF5 microcrystals were synthesized by solvent-thermal method. Under excitation of 980 nm laser diode, effectively visible and 2 μm-infrared luminescence of Ho3+ ion were obtained in the microcrystals. By changing Ce3+-ion doping concentration, the luminescence properties of visible and 2 μm emission were effectively regulated. At low Ce3+-ion doping level, the red and green upconversion emission obviously increases and decreases respectively with the increase of Ce3+-ion amount in the samples, meanwhile the intensity of 2 μm fluorescence changes very little. At high Ce3+-ion doping level, the intensities of the red and green emission both decrease with the increase of Ce3+-ion concentration, while the 2 μm emission intensity increases obviously. In the sample doped with 16% Ce3+ ion, the intensity of 2 μm emission is about 4.5 times that of the sample without Ce3+ ion, and the corresponding quantum efficiency is about 78.3%. The result is attributed to the influence of the different cross relaxation between Ho3+ and Ce3+ ion in luminescence process at low and high Ce3+-ion doping concentration. The corresponding luminescence mechanism and energy transfer process were discussed in detail.  相似文献   

14.
《Current Applied Physics》2020,20(5):696-702
Ca3(PO4)2:1mol%Ce3+/xGd3+ (where x = 0.5, 1.0, 3.0 and 5.0 mol%) phosphors were synthesized by the conventional combustion synthesis method. The X-ray diffraction patterns showed their rhombohedral structure with space group of R3c. The optical properties including reflectance, excitation and emission were investigated. The band gaps of the phosphors were calculated from diffuse reflectance spectra data using the Kubelka–Munk function. The photoluminescence (PL) excitation spectra exhibited the broadband 4f–5d transition of Ce3+ ions centered at ~265 nm. The PL emission properties of the Ca3(PO4)2:Ce3+/Gd3+ phosphors were studied as a function of the Gd3+ ion concentration. The Ca3(PO4)2:Ce3+/Gd3+ phosphor had a wide emission band ranging from 320 to 400 nm, and peaking at 365 nm. This emission is ascribed to the transition from the higher 5d band to 2F7/2, 2F5/2 states of the Ce3+ ion. The 365 nm peak shifted to longer wavelengths with increasing concentration of the Gd3+ ion. The CIE chromaticity diagram of Ca3(PO4)2:Ce3+/Gd3+ phosphor showed tunable emission colour from violet to violet-blue, suggesting that this phosphor can act as a source of violet-blue colour for application in information displays, phototherapy and photoluminescent liquid crystal displays.  相似文献   

15.
A novel Ce3+/Eu2+ co-activated LiSr4(BO3)3 phosphor has been synthesized by traditional solid-state reaction. The samples could display varied color emission from blue towards white and ultimately to yellow under the excitation of ultraviolet (UV) light with the appropriate adjustment of the relative proportion of Ce3+/Eu2+. The resonance-type energy transfer mechanism from Ce3+ to Eu2+ in LiSr4(BO3)3:Ce3+, Eu2+ phosphors is dominant by electric dipole–dipole interaction, and the critical distance is calculated to be about 29.14 Å by the spectra overlap method. White light was observed from LiSr4(BO3)3:mCe3+, nEu2+ phosphors with chromaticity coordinates (0.34, 0.30) upon 350 nm excitation. The LiSr4(BO3)3:Ce3+, Eu2+ phosphor has potential applications as an UV radiation-converting phosphor for white light-emitting diodes.  相似文献   

16.
Absorption spectra measurements of cerium-doped binary system from barium-borate glasses have been measured. The effects of dopant concentration of CeO2 and Al2O3 in the concentration range 0.54-2.9 and 4.8-9.2 mol%, respectively, and exposed to different irradiation doses have been measured in the range 1-7 eV and the result have been interpreted in terms of structural concepts. The radiation-induced broad band at 2.25-1.88 eV in the base glass is observed to be suppressed by the presence of cerium due to the transformation of Ce4+ to Ce3+. The released electrons are then used to annihilate positive holes responsible for this band. The resolution of the observed absorption spectra show two to seven induced bands depending on the glass composition. Absorption spectra of the irradiated binary glass system are found to be controlled by the cerium concentration. From the absorption edge studies, the values of optical band gap Eopt and Urbach energy ΔE have been evaluated. The oxidoreduction (redox) reaction Ce3+/Ce4+ is assumed to be related to the glass basicity and the possible complex-ion formation. The oxygen ion activity (O2−) is believed to be related to the basicity and to the possible oxygen ion formation in the glass melt, and the redox equilibrium is shifted toward the reduced state.  相似文献   

17.
Bhabu  K. Amarsingh  Theerthagiri  J.  Madhavan  J.  Balu  T.  Rajasekaran  T. R  Arof  A. K. 《Ionics》2016,22(12):2461-2470

Nanocrystalline acceptor (Pr3+) and donor (Nb5+) doped cerium oxide are synthesized by sol-gel method via hydrolysis process and evaluated for the suitability of applying as an electrolyte for the intermediate temperature solid oxide fuel cells. Phase purity and crystallite size of the synthesized materials are ascertained by powder X-ray diffraction studies. Introduction of Pr3+ ions in the cerium lattice exhibited a lower crystallite size than the Nb5+, which exposes the probability to attain high oxide ion conductivity of Pr3+ doped cerium oxide. Fourier transform infrared and Raman spectra confirm the functional groups and formation of Pr3+ and Nb5+ ions in the cerium lattice. Absorbance spectra exhibit the charge-transfer transition from O2− (2p) to Ce4+ (4f) orbital in cerium oxide. Pr3+ and Nb5+ ions doped cerium lattice create the oxygen vacancies and favor the formation of Ce3+ from Ce4+. Valence band transition of Ce3+ ions from the 5d to 4f levels are examined by photoluminescence studies. The morphological features of Ce-Pr-O and Ce-Nb-O are investigated by scanning and transmission electron microscopy. Electrochemical impedance spectroscopy is used to analyze the conductivity properties of solid electrolytes. Ce-Pr-O shows the high oxide ion conductivity of 0.1 S/cm at 600 °C with an activation energy of 0.73 eV. Electrolytes with specific conductivities higher than 10−2 S/cm at intermediate temperatures (∼400–600 °C) are required for solid oxide fuel cells to operate with less maintenance. Hence, Ce-Pr-O can be a suitable electrolyte material for intermediate temperature solid oxide fuel cells.

  相似文献   

18.
The results of electron paramagnetic resonance (EPR) studies of Ce3+ impurity ions in single crystals of lead thiogallate PbGa2S4 have been reported. The Ce3+ ions substitute for Pb2+ ions in the crystal lattice of PbGa2S4. A number of paramagnetic cerium centers in lead thiogallate have been observed. The spectra are described by the spin Hamiltonian of rhombic symmetry with the effective spin S = 1/2. The g factors of the main cerium centers have been determined. A large number of paramagnetic centers are due to both nonequivalent positions of lead and local charge compensation under the substitution Ce3+ ?? Pb2+.  相似文献   

19.
Thermoluminescence (TL) characteristics of recently developed high sensitive mixed halosulphate phosphors, NaMgSO4Cl: Cu and NaMgSO4Cl: Ce were studied in comparison with CaSO4: Dy in order to assess the possibility of their use in personal monitoring and TLD phosphors at very low dose of 5 Gy. It was found that NaMgSO4Cl: Cu is 5.59 times and NaMgSO4Cl: Ce is 6.18 times more sensitive as compared to standard CaSO4: Dy. UV photo-excited luminescence from Cu to Ce doped NaMgSO4Cl halosulphate phosphors has been investigated. The intense emission of the spectrum is assigned to electronic transitions 3d94s1→3d10 in monovalent copper ion and 5d→4f in Ce3+ ions. Increase in PL peak intensity suggesting that Cu and Ce play an important role in PL emission in the present matrix. These phosphors were synthesized by the wet chemical method. XRD, photoluminescence (PL) and thermoluminescence (TL) characterization of phosphors has been reported in this paper. The preparation of an inexpensive and high sensitive NaMgSO4Cl: Cu and NaMgSO4Cl: Ce with TL glow peaks for different concentrations are observed between 160 and 195 °C and between 200 and 225 °C, respectively, exposed to gamma-rays of 60Co for their thermoluminescence (TL) properties. The glow curves have been recorded at a heating rate of 2 K s?1 and irradiated at a dose rate of 0.995 kGy h?1 for 5 Gy. In present study the trapping parameters such as order of kinetics (b), activation energy (E) and frequency factors (s) have been calculated for the 195 and 200 °C glow peaks of NaMgSO4Cl: Cu and NaMgSO4Cl: Ce, respectively by using Chen's method. The paper discusses the luminescence of Cu+ and Ce3+ by simple method of incorporation in NaMgSO4Cl host.  相似文献   

20.
熊晓波  袁曦明  刘金存  宋江齐 《物理学报》2015,64(1):17801-017801
采用高温固相法制备了Na2SrMg(PO4)2: Ce3+, Mn2+ (NSMP: Ce3+, Mn2+) 荧光粉, 并对其发光性质及Ce3+ 对Mn2+ 的能量传递机理进行了研究. Ce3+ 和Mn2+ 在334 nm 和617 nm 的发射峰分别为Ce3+ 的5d→4f 跃迁和Mn2+4T1(4G)→6A1(6S) 跃迁产生. Ce3+ 对Mn2+ 的发光有较强的敏化作用, 根据Dexter能量传递效率公式判断Na2SrMg(PO4)2 中Ce3+ 对Mn2+ 的能量传递属于电偶极-电四极相互作用引起的共振能量传递.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号