首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanobubbles are expected to dissolve in milliseconds. Experimental evidence of nanobubbles that were stable for days had thus been first received with circumspection. If the large number of experimental confirmations has now made clear that surface nanobubbles could exist, bulk nanobubbles are still subject to debate. When observations are reported, the main problem is to make sure the observed particles are really made of gas. We show that ultrasound is an ideal tool for investigating the existence of bulk nanobubbles: 1) it is sensitive to minute quantities of gas, 2) it allows one to determine the bubble size distribution, 3) it discriminates unambiguously between gaseous and solid/liquid inclusions. To illustrate the efficiency of ultrasonic detection, we performed size measurements of bubbles produced by a commercial nano‐/microbubble generator. No nanobubble was detected with this device. It would be insightful to use ultrasonic detection in experimental situations for which stable nanobubbles were reported.  相似文献   

2.
We report a novel form of the gaseous state at the interface of water and highly oriented pyrolytic graphite (HOPG) that is induced by local supersaturation of gas. Such local supersaturation of gas next to the HOPG substrate can be achieved by (1) displacing an organic liquid with a gentle flow of water, (2) displacing cold water (approximately 0 degrees C) with a gentle flow of warm water (approximately 40 degrees C), or (3) preheating the HOPG substrate to approximately 80 degrees C before exposing it to water at room temperature. In addition to the spherical-cap-shaped nanobubbles reported by many researchers, flat (quasi-two-dimensional, pancake-like) gas layers and nanobubble-flat gas layer composites (spherical-cap-shaped nanobubbles sitting on top of the quasi-two-dimensional gas layers) were detected. These entities disappeared after the system was subjected to a moderate level of degassing (approximately 0.1 atm for 1.5 h), and they did not form when the liquids involved in the aforementioned displacing procedure (to induce local supersaturation of gas) had been predegassed (to approximately 0.1 atm). The stability and some physical properties of these newly found gaseous states are examined.  相似文献   

3.
We studied the thermodynamic stability of interfacial gaseous states on atomically smooth highly ordered pyrolytic graphite (HOPG) in water using atomic force microscopy. Quasi-two-dimensional gas layers (micropancakes) required a higher supersaturation of gas than spherical-cap-shaped nanobubbles. The two forms of gas coexisted at a sufficiently high supersaturation of gas where one or more of the nanobubbles may sit on top of a micropancake. The micropancakes spontaneously coalesced with each other over time. After the coalescence of two neighboring micropancakes which each had had a nanobubble on top, one nanobubble grew at the expense of the other. We analyzed these results assuming temporal and local quasi-equilibrium conditions.  相似文献   

4.
Electrochemically controlled formation and growth of hydrogen nanobubbles   总被引:2,自引:0,他引:2  
Electrogenerated microscale bubbles that are confined at the electrode surface have already been extensively studied because of their significant influence on electrochemistry. In contrast, as far as we know, whether nanoscale bubbles exist on the electrode surface has not been experimentally confirmed yet. Here, we report the observation of electrochemically controlled formation and growth of hydrogen nanobubbles on bare highly oriented pyrolytic graphite (HOPG) surface via in-situ tapping mode atomic force microscopy (TMAFM). By using TMAFM imaging, we observed that electrochemically generated hydrogen gas led to the formation of nanobubbles at the HOPG surface. We then employed a combination of techniques, including phase imaging, ex-situ degassing, and tip perturbation, to confirm the gas origin of such observed nanobubbles. We further demonstrated that the formation and growth of nanobubbles could be well controlled by tuning either the applied voltage or the reaction time. Remarkably, we could also monitor the evolution process of nanobubbles, that is, formation, growth, coalescence, as well as the eventual release of merged microbubbles from the HOPG surface.  相似文献   

5.
In recent years there has been an accumulation of evidence for the existence of nanobubbles on hydrophobic surfaces in water, despite predictions that such small bubbles should rapidly dissolve because of the high internal pressure associated with the interfacial curvature and the resulting increase in gas solubility. Nanobubbles are of interest among surface scientists because of their potential importance in the long-range hydrophobic attraction, microfluidics, and adsorption at hydrophobic surfaces. Here we employ recently developed techniques designed to induce nanobubbles, coupled with high-resolution tapping-mode atomic force microscopy (TM-AFM) to measure some of the physical properties of nanobubbles in a reliable and repeatable manner. We have reproduced the earlier findings reported by Hu and co-workers. We have also studied the effect of a wide range of solutes on the stability and morphology of these deliberately formed nanobubbles, including monovalent and multivalent salts, cationic, anionic, and nonionic surfactants, as well as solution pH. The measured physical properties of these nanobubbles are in broad agreement with those of macroscopic bubbles, with one notable exception: the contact angle. The nanobubble contact angle (measured through the denser aqueous phase) was found to be much larger than the macroscopic contact angle on the same substrate. The larger contact angle results in a larger radius of curvature and a commensurate decrease in the Laplace pressure. These findings provide further evidence that nanobubbles can be formed in water under some conditions. Once formed, these nanobubbles remain on hydrophobic surfaces for hours, and this apparent stability still remains a well-recognized mystery. The implications for sample preparation in surface science and in surface chemistry are discussed.  相似文献   

6.
The existence of stable nanoscopic gaseous domains in liquids, or nanobubbles, has attracted both skepticism and intrigue since classical theory predicts that spherical gas bubbles cannot achieve stable equilibrium. Can we prove these gaseous domains exist, and if they do, how do they survive? We critically review contemporary theoretical perspectives of the stability of surface and bulk nanobubbles and explain how experiments either vindicate or disprove them. We conclude with a discussion of unanswered questions and propose future directions for the field at large.  相似文献   

7.
固液界面纳米气泡的研究进展   总被引:6,自引:0,他引:6  
张雪花  胡钧 《化学进展》2004,16(5):673-681
根据经典热力学理论,在水中纳米级的气泡难以长期稳定存在.近年来却有大量的实验结果表明固液界面存在纳米气泡,原子力显微镜也直接观察到了纳米气泡.有关纳米气泡的研究具有巨大的理论和实际意义,它对表面科学、流体动力学、生物科学以及一些应用领域都有深远的影响.纳米气泡会引起流体在界面的滑移,减少流动阻力,并与表面粘附、胶体分散、矿石浮选、废渣处理等方面密切相关.目前关于纳米气泡的研究才刚刚开始,对于它的基本物化性质的了解还不多,但其重要性已经引起相关领域的极大关注.本文综述了从提出纳米气泡存在一直到实验证明的过程、纳米气泡的形成机制和形貌、分布特征等基本性质以及纳米气泡的存在对疏水长程作用和流体滑移的影响,并阐述了生物学中一些与纳米气泡存在有关的问题.  相似文献   

8.
Highly stable nanoscale gas states at solid/liquid interfaces, referred to as nanobubbles, have been widely studied for over a decade. In this study, nanobubbles generated on a hydrophobic Teflon amorphous fluoroplastic thin film in the presence and absence of hydrophilic carbon domains are investigated by peak force quantitative nanomechanics. On the hydrophobic surface without hydrophilic domains, a small number of nanobubbles are generated and then rapidly decrease in size. On the hydrophobic surface with hydrophilic domains, the hydrophilic domains have a significant effect on the generation and stability of nanobubbles, with bubbles remaining on the surface for up to three days.  相似文献   

9.
Gas saturated solutions have attracted great attention in the past two decades with reports of stable nanobubbles in solutions. The fundamental interest focus arises from the surprising stability which opens up a wide range of potential applications where the interactions between particles and nanobubbles are important. Here, we review the current state of knowledge on systems involving both nanobubbles and nanoparticles. As nanoparticles and nanobubbles are found together in many circumstances, particularly those involving applications of nanobubbles, knowledge of these systems is important. This includes examining the formation of nanoparticles from nanobubbles, the nucleation of nanobubbles from nanoparticles, and the interactions between nanobubbles and nanoparticles. It is clear that further work is required to more fully understand these systems, in particular on the problem of nanobubble nucleation and nanobubble–nanoparticle interactions at the submicron scale.  相似文献   

10.
Surface-attached nanobubbles are spherical cap–shaped gas bubbles that remain stable in size in saturated liquids. Their positional stability resulted in a manifold of experimental techniques to record their topography, softness, and chemical composition. Here, we summarize these techniques and how to distinguish them from nongaseous objects commonly found on surfaces in contact with liquids.  相似文献   

11.
李大勇  王伟杰  赵学增 《化学进展》2012,24(8):1447-1455
固液界面纳米气泡是近十年来表面科学的重要发现之一。从利用原子力显微镜(AFM)在固液界面上观察到纳米气泡以来,科学工作者们已经证实了纳米气泡在固液界面上存在。由于其在微机电系统(MEMS)、微生化系统、表面科学、流体动力学等领域潜在的应用价值,各国学者们对纳米气泡的自身性质及影响因素已经开展了多方面的研究。但纳米气泡稳定性(反常的长寿)的原因仍然是未解决的问题之一。本文综述了纳米气泡的形成及影响因素,重点评述了纳米气泡稳定性理论,包括线张力理论、动态平衡理论、杂质理论和克努森气体理论等。同时,介绍了固液界面纳米气泡的应用,并展望了未来研究的重点和方向。  相似文献   

12.
It is the aim of this paper to quantitatively characterize the capability of surface nanobubbles for surface cleaning, i.e., removal of nanodimensioned polystyrene particles from the surface. We adopt two types of substrates: plain and nanopatterned (trench/ridge) silicon wafer. The method used to generate nanobubbles on the surfaces is the so-called alcohol-water exchange process (use water to flush a surface that is already covered by alcohol). It is revealed that nanobubbles are generated on both surfaces, and have a remarkably high coverage on the nanopatterns. In particular, we show that nanoparticles are-in the event of nanobubble occurrence-removed efficiently from both surfaces. The result is compared with other bubble-free wet cleaning techniques, i.e., water rinsing, alcohol rinsing, and water-alcohol exchange process (use alcohol to flush a water-covered surface, generating no nanobubbles) which all cause no or very limited removal of nanoparticles. Scanning electron microscopy (SEM) and helium ion microscopy (HIM) are employed for surface inspection. Nanobubble formation and the following nanoparticle removal are monitored with atomic force microscopy (AFM) operated in liquid, allowing for visualization of the two events.  相似文献   

13.
Formation of stable nanobubbles in aqueous solutions of water-soluble organic molecules is a spontaneous process. Using a combination of laser light scattering (LLS) and zeta-potential measurements, we investigated the effects of salt concentration and pH on their stability in alpha-cyclodextrin (alpha-CD) aqueous solutions. Our results reveal that the nanobubbles are unstable in solution with a higher ionic strength, just like colloidal particles in an aqueous dispersion, but become more stable in alkaline solutions. The zeta-potential measurement shows that the nanobubbles are negatively charged with an electric double layer, presumably due to adsorption of negative OH- ions at the gas/water interface. It is this double layer that plays a critical dual role in the formation of stable nanobubbles in aqueous solutions of water-soluble organic molecules, namely, it not only provides a repulsive force to prevent interbubble aggregation and coalescence but also reduces the surface tension at the gas/water interface to decrease the internal pressure inside each bubble.  相似文献   

14.
Results of experiments with dynamic light scattering, phase microscopy, and polarimetric scatterometry allow us to claim that long-living gas nanobubbles and the clusters composed of such nanobubbles are generated spontaneously in an aqueous solution of salt, saturated with dissolved gas (say, atmospheric air). The characteristic sizes of both nanobubbles and their clusters are found by solving the inverse problem of optical wave scattering in ionic solutions. These experimental results develop our earlier study reported by Bunkin et al. [J. Chem. Phys. 130, 134308 (2009)] and can be treated as evidence for the special role of ions in the generation and stabilization of gas nanobubbles.  相似文献   

15.
The aim of this paper is to quantitatively characterize the appearance, stability, density, and shape of surface nanobubbles on hydrophobic surfaces under varying conditions such as temperature and temperature variation, gas type and concentration, surfactants, and surface treatment. The method we adopt is atomic force microscopy (AFM) operated in the tapping mode. In particular, we show (i) that nanobubbles can slide along grooves under the influence of the AFM tip, (ii) that nanobubbles can spontaneously form by substrate heating, allowing for a comparison of the surface topology with and without the nanobubble, (iii) that a water temperature increase leads to a drastic increase in the nanobubble density, (iv) that pressurizing the water with CO2 also leads to a larger nanobubble density, but typically to smaller nanobubbles, (v) that alcohol-cleaning of the surface is crucial for the formation of surface nanobubbles, (vi) that adding 2-butanol as surfactant leads to considerably smaller surface nanobubbles, and (vii) that flushing water over alcohol-covered surfaces strongly enhances the formation of surface nanobubbles.  相似文献   

16.
Aqueous solutions of tetrahydrofuran, ethanol, urea, and alpha-cyclodextrin were studied by a combination of static and dynamic laser light scattering (LLS). In textbooks, these small organic molecules are soluble in water so that there should be no observable large structures or density fluctuation in either static or dynamic LLS. However, a slow mode has been consistently observed in these aqueous solutions in dynamic LLS. Such a slow mode was previously attributed to some large complexes or supramolecular structures formed between water and these small organic molecules. Our current study reveals that it is actually due to the existence of small bubbles ( approximately 100 nm in diameter) formed inside these solutions. Our direct evidence comes from the fact that it can be removed by repeated filtration and regenerated by air injection. Our results also indicate that the formation of such nanobubbles in small organic molecule aqueous solutions is a universal phenomenon. Such formed nanobubbles are rather stable. The measurement of isothermal compressibility confirms the existence of a low density microphase, presumably nanobubbles, in these aqueous solutions. Using a proposed structural model, that is, each bubble is stabilized by small organic molecules adsorbed at the gas/water interface, we have, for the first time, estimated the pressure inside these nanobubbles.  相似文献   

17.
Nanobubble nucleation study is important for understanding the dynamic behavior of nanobubble growth, which is instructive for the nanobubble applications. Benefiting from nanopore fabrication, herein, we fabricated a sub-9 nm SiNX nanopore with the comparable size to nanobubbles at early-stage. The confined nanopore interface serves as a generator for producing nanobubbles by the chemical reaction between NaBH4 and H2O and as an ultra-sensitive sensor for monitoring the H2 nanobubble nucleation process. By carrying out the NaBH4 concentration-dependent experiments, we found the life-time of nanobubbles decreased 250 times and the frequency of nanobubble generation increased 38 times with the NaBH4 concentration increasing from 6 to 100 mM. The long-time equilibrium between gas molecules inward flux and outward flux could prolong the life-time of nanobubbles to hundreds of milliseconds at low NaBH4 concentration. The raw current trace depicted that the transient accumulation and dissolution of cavity occurred during all the life-time of nanobubbles. Therefore, the sub-9 nm SiNX nanopore shows a strong ability for real-time monitoring the nanobubble nucleation at early-stage with high temporal and spatial resolution. This work provides a guide to study the dynamic and stochastic characteristics of nanobubbles.  相似文献   

18.
We experimentally investigate the nucleation of surface nanobubbles on PFDTS-coated silicon as a function of the specific gas dissolved in water. In each case, we restrict ourselves to equilibrium conditions (c = 100%, T(liquid) = T(substrate)). Not only is nanobubble nucleation a strong function of gas type, but there also exists an optimal system temperature of ~35 -40 °C where nucleation is maximized, which is weakly dependent on gas type. We also find that the contact angle is a function of the nanobubble radius of curvature for all gas types investigated. Fitting this data allows us to describe a line tension that is dependent on the type of gas, indicating that the nanobubbles sit on top of adsorbed gas molecules. The average line tension was τ ≈ -0.8 nN.  相似文献   

19.
Catalysts that catalyze the generation of products in the gas phase, especially those involved in the hydrogen evolution reaction (HER), hold great promise for ecofriendly and sustainable energy development. In general, gas chromatography is widely used to measure catalytic activity. Unfortunately, it gives an averaged output that washes out the heterogeneities among individuals. To assess the unique catalytic properties at the single nanoparticle level, various methods based on single particle catalysis have been proposed. Over the past fifteen years, tremendous breakthroughs have been achieved, which uncovered hidden spatial and temporal heterogeneities. Although powerful, effectively quantifying the activities of single HER nanocatalysts remains challenging because of the fast diffusion of hydrogen (H2). In 2017, a novel approach based on a nanobubble indicator was proposed to correlate the kinetics of gas bubble evolution with the catalytic activities of individual nanoentities during the HER process. Since then, a plethora of optical microscopy techniques have been utilized to monitor dynamically evolved nanobubbles and to measure the catalytic activities of single HER catalysts. In this minireview, we summarized state-of-the-art optical microscopy for in operando imaging of dynamic nanobubbles involved in gas-generating reactions while highlighting some important discoveries, including the blinking photocatalytic activity and heterogeneous distribution of active sites. Finally, challenges and future perspectives in this promising field were identified.  相似文献   

20.
Targeted ultrasound contrast agents can be prepared by some specific bioconjugation techniques. The biotin-avidin complex is an extremely useful noncovalent binding system, but the system might induce immunogenic side effects in human bodies. Previous proposed covalently conjugated systems suffered from low conjugation efficiency and complex procedures. In this study, we propose a covalently conjugated nanobubble coupling with nucleic acid ligands, aptamers, for providing a higher specific affinity for ultrasound targeting studies. The sgc8c aptamer was linked with nanobubbles through thiol-maleimide coupling chemistry for specific targeting to CCRF-CEM cells. Further improvements to reduce the required time and avoid the degradation of nanobubbles during conjugation procedures were also made. Several investigations were used to discuss the performance and consistency of the prepared nanobubbles, such as size distribution, conjugation efficiency analysis, and flow cytometry assay. Further, we applied our conjugated nanobubbles to ex vivo ultrasound targeted imaging and compared the resulting images with optical images. The results indicated the availability of aptamer-conjugated nanobubbles in targeted ultrasound imaging and the practicability of using a highly sensitive ultrasound system in noninvasive biological research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号