首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton’s reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process.  相似文献   

2.
《Ultrasonics sonochemistry》2014,21(3):1075-1082
In the present work, degradation of reactive orange 4 dye (RO4) has been investigated using hydrodynamic cavitation (HC) and in combination with other AOP’s. In the hybrid techniques, combination of hydrodynamic cavitation and other oxidizing agents such as H2O2 and ozone have been used to get the enhanced degradation efficiency through HC device. The hydrodynamic cavitation was first optimized in terms of different operating parameters such as operating inlet pressure, cavitation number and pH of the operating medium to get the maximum degradation of RO4. Following the optimization of HC parameters, the degradation of RO4 was carried out using the combination of HC with H2O2 and ozone. It has been found that the efficiency of the HC can be improved significantly by combining it with H2O2 and ozone. The mineralization rate of RO4 increases considerably with 14.67% mineralization taking place using HC alone increases to 31.90% by combining it with H2O2 and further increases to 76.25% through the combination of HC and ozone. The synergetic coefficient of greater than one for the hybrid processes of HC + H2O2 and HC + Ozone has suggested that the combination of HC with other oxidizing agents is better than the individual processes for the degradation of dye effluent containing RO4. The combination of HC with ozone proves to be the most energy efficient method for the degradation of RO4 as compared to HC alone and the hybrid process of HC and H2O2.  相似文献   

3.
超声在废水处理中的应用   总被引:15,自引:2,他引:15       下载免费PDF全文
超声波处理废水是一项新兴的废水处理技术,具有操作简单方便、降解速度快等优点,在处理毒性高、难降解的有机废水应用表现出广阔的前景。  相似文献   

4.
We have developed artificial neural network (ANN) based models for simulating two application examples of hydrodynamic cavitation (HC) namely, biomass pre-treatment to enhance biogas and degradation of organic pollutants in water. The first case reports data on influence of number of passes through HC reactor on bio-methane generation from bagasse. The second case reports data on influence of HC reactor scale on degradation of dichloroaniline (DCA). Similar to most of the HC based applications, the availability of experimental data for these two applications is rather limited. In this work a systematic methodology for developing ANN model is presented. The models were shown to describe the experimental data very well. The ANN models were then evaluated for their ability to interpolate and extrapolate. Despite the limited data, the ANN models were able to simulate and interpolate the data for two very different and complex HC applications very well. The extrapolated results of biomethane generation in terms of number of passes were consistent with the intuitive understanding. The extrapolated results in terms of elapsed time were however not consistent with the intuitive understanding. The ANN model was able to generate intuitively consistent extrapolated results for degradation of DCA in terms of number of passes as well as scale of HC reactor. The results will be useful for developing quantitative models of complex HC applications.  相似文献   

5.
In the present work, degradation of 2,4-dinitrophenol (DNP), a persistent organic contaminant with high toxicity and very low biodegradability has been investigated using combination of hydrodynamic cavitation (HC) and chemical/advanced oxidation. The cavitating conditions have been generated using orifice plate as a cavitating device. Initially, the optimization of basic operating parameters have been done by performing experiments over varying inlet pressure (over the range of 3–6 bar), temperature (30 °C, 35 °C and 40 °C) and solution pH (over the range of 3–11). Subsequently, combined treatment strategies have been investigated for process intensification of the degradation process. The effect of HC combined with chemical oxidation processes such as hydrogen peroxide (HC/H2O2), ferrous activated persulfate (HC/Na2S2O8/FeSO4) and HC coupled with advanced oxidation processes such as conventional Fenton (HC/FeSO4/H2O2), advanced Fenton (HC/Fe/H2O2) and Fenton-like process (HC/CuO/H2O2) on the extent of degradation of DNP have also been investigated at optimized conditions of pH 4, temperature of 35 °C and inlet pressure of 4 bar. Kinetic study revealed that degradation of DNP fitted first order kinetics for all the approaches under investigation. Complete degradation with maximum rate of DNP degradation has been observed for the combined HC/Fenton process. The energy consumption analysis for hydrodynamic cavitation based process has been done on the basis of cavitational yield. Degradation intermediates have also been identified and quantified in the current work. The synergistic index calculated for all the combined processes indicates HC/Fenton process is more feasible than the combination of HC with other Fenton like processes.  相似文献   

6.
Methomyl, a carbamate pesticide, is classified as a pesticide of category-1 toxicity and hence shows harmful effects on both human and aquatic life. In the present work, the degradation of methomyl has been studied by using hydrodynamic cavitation reactor (HC) and its combination with intensifying agents such as H2O2, fenton reagent and ozone (hybrid processes). Initially, the optimization of operating parameters such pH and inlet pressure to the cavitating device (circular venturi) has been carried out for maximizing the efficacy of hydrodynamic cavitation. Further degradation study of methomyl by the application of hybrid processes was carried out at an optimal pH of 2.5 and the optimal inlet pressure of 5 bar. Significant synergetic effect has been observed in case of all the hybrid processes studied. Synergetic coefficient of 5.8, 13.41 and 47.6 has been obtained by combining hydrodynamic cavitation with H2O2, fenton process and ozone respectively. Efficacy of individual and hybrid processes has also been obtained in terms of energy efficiency and extent of mineralization. HC + Ozone process has proved to be the most effective process having highest synergetic coefficient, energy efficiency and the extent of mineralization. The study has also encompassed the identification of intermediate by-products generated during the degradation and has proposed the probable degradation pathway. It has been conclusively established that hydrodynamic cavitation in the presence of intensifying agents can effectively be used for complete degradation of methomyl.  相似文献   

7.
The present work gives an in depth discussion related to the development of a hybrid advanced oxidation reactor, which can be effectively used for the treatment of various types of water. The reactor is based on the principle of intensifying degradation/disinfection using a combination of hydrodynamic cavitation, acoustic cavitation, ozone injection and electrochemical oxidation/precipitation. Theoretical studies have been presented to highlight the uniform distribution of the cavitational activity and enhanced generation of hydroxyl radicals in the cavitation zone, as well as higher turbulence in the main reactor zone. The combination of these different oxidation technologies have been shown to result in enhanced water treatment ability, which can be attributed to the enhanced generation of hydroxyl radicals, enhanced contact of ozone and contaminants, and the elimination of mass transfer resistances during electrochemical oxidation/precipitation. Compared to the use of individual approaches, the hybrid reactor is expected to intensify the treatment process by 5–20 times, depending on the application in question, which can be confirmed based on the literature illustrations. Also, the use of Ozonix® has been successfully proven while processing recycled fluids at commercial sites on over 750 oil and natural gas wells during hydraulic operations around the United States. The superiority of the hybrid process over conventional chemical treatments in terms of bacteria and scale reduction as well as increased water flowability and better chemical compatibility, which is a key requirement for oil and gas applications, has been established.  相似文献   

8.
The present study has investigated the degradation of thiamethoxam using ultrasound cavitation (US) operated at a frequency of 20 kHz and its combination with intensifying additives viz. hydrogen peroxide, Fenton and photo-Fenton reagent. At the outset, the performance of US (20 kHz) has been maximised by the optimization of process parameters. Highest rate of degradation of thiamethoxam was observed at the optimum ultrasonic power density of 0.22 W/mL, thiamethoxam concentration of 10 ppm and the pH of 2. The established optimum values of operating parameters were used further in case of combined treatment approaches. The effect of concentration of H2O2 on the rate of degradation of thiamethoxam in the case of US + H2O2 process has confirmed the existence of optimum concentration of H2O2 with the ratio of thiamethoxam: H2O2 as 1:10. US + Fenton process indicated the optimal molar ratio of FeSO4·7H2O:H2O2 as 1:15. The combined processes of US + H2O2, US + Fenton and US + photo-Fenton have resulted in the extent of degradation of 20.47 ± 0.61%, 34.41 ± 1.03% and 85.17 ± 2.56% respectively after 45 min. of operation. These combined processes lead to the synergistic index of 2.04 ± 0.06, 2.26 ± 0.07 and 2.42 ± 0.07 in case of US + H2O2, US + Fenton and US + photo-Fenton processes respectively over only US/stirring treatment with the additive. Additionally, the extent of mineralization and the energy efficiency of individual and combined processes have been compared. US + photo-Fenton process has been found to be the best strategy for effective degradation of thiamethoxam with a significant intensification benefit. The by-products formed during the ultrasonic degradation of thiamethoxam have been identified by using LC-MS/MS analysis.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(5):1770-1777
The harmful effects of wastewaters containing pesticides or insecticides on human and aquatic life impart the need of effectively treating the wastewater streams containing these contaminants. In the present work, hydrodynamic cavitation reactors have been applied for the degradation of imidacloprid with process intensification studies based on different additives and combination with other similar processes. Effect of different operating parameters viz. concentration (20–60 ppm), pressure (1–8 bar), temperature (34 °C, 39 °C and 42 °C) and initial pH (2.5–8.3) has been investigated initially using orifice plate as cavitating device. It has been observed that 23.85% degradation of imidacloprid is obtained at optimized set of operating parameters. The efficacy of different process intensifying approaches based on the use of hydrogen peroxide (20–80 ppm), Fenton’s reagent (H2O2:FeSO4 ratio as 1:1, 1:2, 2:1, 2:2, 4:1 and 4:2), advanced Fenton process (H2O2:Iron Powder ratio as 1:1, 2:1 and 4:1) and combination of Na2S2O8 and FeSO4 (FeSO4:Na2S2O8 ratio as 1:1, 1:2, 1:3 and 1:4) on the extent of degradation has been investigated. It was observed that near complete degradation of imidacloprid was achieved in all the cases at optimized values of process intensifying parameters. The time required for complete degradation of imidacloprid for approach based on hydrogen peroxide was 120 min where as for the Fenton and advance Fenton process, the required time was only 60 min. To check the effectiveness of hydrodynamic cavitation with different cavitating devices, few experiments were also performed with the help of slit venturi as a cavitating device at already optimized values of parameters. The present work has conclusively established that combined processes based on hydrodynamic cavitation can be effectively used for complete degradation of imidacloprid.  相似文献   

10.
Chlorine dioxide (ClO2) has been promoted as an alternative disinfectant because of its high disinfection efficiency and less formation of organic disinfection by-products (DBPs). However, particle-associated microorganisms could be protected during the disinfection process, which decreases the disinfection efficiency or increases the required dosage. Besides, the formation of inorganic disinfection by-products is a significant concern in environment health. Ultrasound (US)-combined disinfection methods are becoming increasingly attractive because they are efficient and environmentally friendly. In this study, US was introduced as an enhancement method to identify its influence on ClO2 demand reduction and to minimize the production of potential DBPs for secondary effluents disinfection. Fecal coliform was used as an indicator, and DBPs, including trichloromethane (TCM), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), chlorite (ClO2), and chlorate (ClO3), were analyzed to observe the potential DBPs formation. Results show that US pretreatment could reduce half of ClO2 dosage compared with ClO2 disinfection alone for the same disinfection efficiency, and that an input power density of 2.64 kJ/L pretreatment with the 1.5 mg/L ClO2 was enough to meet the discharge requirement in China (i.e., fecal coliform below 1000 CFU/L for Class 1A) for secondary effluent disinfection, and the ClO2 concentration in the disinfection effluent was only 1.37 mg/L at the same time. Furthermore, the different effects of US on the two processes (US as pretreatment and simultaneous US/ClO2 disinfection) were also analyzed, including deagglomerating, cell damage, and synergistic disinfection as well as degasing/sonolysis. It was proved that the production of TCM, DCAA, and TCAA was insignificantly influenced with the introduction of US, but US pretreatment did reduce the production of ClO2 and ClO3 effectually. In general, US pretreatment could be a better option for disinfection enhancement methods combined with ClO2 in terms of both disinfection efficiency and disinfection by-product formation.  相似文献   

11.
This study investigates the effect of cavitation intensity on self-assembling of alkanethiol molecules on gold in room temperature ionic liquids (RTILs) under low frequency ultrasound irradiation (20 kHz). The use of RTILs, with low vapor pressure, enabled cavitation activity to be controlled up to quenching through pressure decrease within an argon-saturated atmosphere. This control possibility was used to acquire deeper insights into the role of cavitation on self-assembling processes. It was shown by electrochemical, contact angles and Polarization Modulation - Infrared Reflection Absorption Spectroscopy (PM-IRRAS) measurements that cavitation activates orientation and organization of self-assembled monolayers (SAM). X-ray Photoelectron Spectroscopy (XPS) revealed that, even if chemical adsorption of molecules is highly activated under ultrasound irradiation, it is not dependent on acoustic cavitation intensity.  相似文献   

12.
The present study is an attempt to improvise the hydrodynamic cavitation methodology for effective disinfection of water and also to suggest prototype development for practical application. The enhancement in the disinfection efficiency was evaluated specifically for the effect of pressure, temperature, pH, microbial inoculum size and also on effect of different additives for the two model microbial strains, gram-negative (Escherichia coli) and gram-positive (Staphylococcus aureus). The efficacy of the hydrodynamic cavitation is evaluated for the two types of flows/cavitation devices – linear flow in the case of orifice and vortex flow for vortex diode. The vortex diode requires significantly lower pressures, 50% lower as compared to orifice for the similar extent of disinfection. While the bacterial disinfection at high temperature is known, the usefulness of hydrodynamic cavitation is especially evident at ambient conditions and the process is effective even at very high concentrations of bacteria, not reported so far. The reactor geometry also has significant effect on the disinfection. The present study, for the first time, reports possible use of different natural oils such as castor oil, cinnamon oil, eucalyptus oil and clove oil in conjunction with hydrodynamic cavitation. The nature of oil modifies the cavitation behavior and an order of magnitude enhancement in the cavitation rate was observed for the two oils, eucalyptus and clove oil for a very small concentration of 0.1%. The increased rates of disinfection, of the order of 2–4 folds, using oil can drastically reduce the time of operation and consequently reduce cost of disinfection. A possible mechanism is proposed for the effect of oil and hydrodynamic cavitation in cell destruction through the rupture of cell wall, oxidative damage and possible DNA denaturation. A cavitation model using per pass disinfection was used to correlate the data. The increased efficiency using oils and possible benefits of the developed process, where natural oils can be perceived as biocatalysts, can have significant advantages in practical applications.  相似文献   

13.
《Ultrasonics sonochemistry》2014,21(3):1206-1212
The decoloration of reactive dye C.I. Reactive Blue 19 (RB 19) using combined ultrasound with the Fenton process has been investigated. The effect of varying the concentrations of hydrogen peroxide and iron sulfate, initial pH, ultrasonic power, initial dye concentration and dissolved gas on the decoloration and degradation efficiencies was measured. Calibration of the ultrasound systems was performed using calorimetric measurements and oxidative species monitoring using the Fricke dosimeter and degradations were carried out with a 20 kHz probe type transducer at 2, 4, 6 and 8 W cm−2 of acoustic intensity at 15, 25, 50 and 75 mg L−1 initial dye concentrations. First order rate kinetics was observed. It was found that while the degradation rate due to ultrasound alone was slow, sonication significantly accelerated the Fenton reaction. While the results were similar to those reported for other dyes, the effects occurred at lower concentrations. The rate and extent of decoloration of RB 19 increased with rising hydrogen peroxide concentration, ultrasonic powers and iron sulfate concentration but decreased with increasing dye concentration. An optimum pH value of pH = 3.5 was found. The rate of decoloration was higher when dissolved oxygen was present as compared with nitrogen and argon confirming the solution phase mechanism of the degradation.  相似文献   

14.
In this article, an acoustic cavitation engineered novel approach for the synthesis of TiO2, cerium and Fe doped TiO2 nanophotocatalysts is reported. The prepared TiO2, cerium and Fe doped TiO2 nanophotocatalysts were characterized by XRD and TEM analysis to evaluate its structure and morphology. Photo catalytic performance of undoped TiO2 catalyst was investigated for the decolorization of crystal violet dye in aqueous solution at pH of 6.5 in the presence of hydro dynamic cavitation. Effect of catalyst doping with Fe and Ce was also studied for the decolorization of crystal violet dye. The results shows that, 0.8% of Fe-doped TiO2 exhibits maximum photocatalytic activity in the decolorization study of crystal violet dye due to the presence of Fe in the TiO2 and it may acts as a fenton reagent. Kinetic studies have also been reported for the hybrid AOP (HAOP) that followed the pseudo first-order reaction kinetics.  相似文献   

15.
Red-G dye is one of the main dyes used in the textile industry to dye alpaca wool. Therefore, considering the large volume of processed wool in Perú, the development of efficient technologies for its removal is a present scientific issue. In this study, an integrated system based on hydrodynamic cavitation (HC) and photo-Fenton process was evaluated to remove the Red-G dye. Using a hybrid cavitation device (venturi + orifice plate), the effect of pH was evaluated, achieving 21 % of removal at pH 2 which was more than 80 % higher compared to pH 4 and 6. The effect of temperature was also evaluated in HC-system at pH 2, where percentage of dye degradation increased at lower temperatures (around 20 °C). Then, 50.7 % of dye was removed under optimized condition of HC-assisted Fenton process (FeSO4:H2O2 of 1:30), that value was improved strongly by UV-light incorporation in the HC-system, increasing to 99 % removal efficiency with respect to HC-assisted Fenton process and reducing the time to 15 min. Finally, the developed cavitation device in combination with photo-Fenton process removed efficiently the dye and thus could be considered an interesting option for application to real wastewater.  相似文献   

16.
Acoustic fields formed during operation of ultrasonic reactors with waveguides of following types: rod-type, cylindrical with rectangular protrusions and tubular were calculated and measured. The influence of distribution of acoustic fields arising from the operation of waveguide systems of three different types on the efficiency of ultrasonic activation of alumosilicic flocculant-coagulant and magnetite intended for water purification was investigated. It was shown that regardless of the equipment used on an industrial scale it is possible to reactivate the alumosilicic flocculant-coagulant even after the shelf life period of it passed, however in case of activation of magnetite the use of a bigger reactor in inefficient.In case of industrial scale processes, the choice of the correct reactor design is of significant importance, since it allows to reduce the required processing time, and, as a result, the energy consumption of the processes. The advantages of tubular waveguide systems include the possibility of processing large volumes of liquid. The high efficiency and uniformity of the excited ultrasonic fields can lead to reduction of operating costs. In case of smaller flows, the waveguide system with rectangular protrusions allowed to obtain better results.Our work illustrates the dependence of the success of a specific method on the choice of the waveguide and the size of the reactor during upscale.  相似文献   

17.
Infant meat puree has an indispensable effect on the oral development and nutritional intake of infants. However, commercially available products have poor texture and relatively low digestibility. In this study, ultrasound (20 kHz and 200 W, 400 W, or 600 W) was applied to the pretreatment of raw meat for preparing infant meat puree for 15 min, 30 min, and 45 min. To assess the impact of ultrasound on infant meat puree, the viscosity, texture, water distribution, particle size and in vitro digestibility were determined. The results showed that, compared with control, viscosity and hardness of meat puree decreased and the texture was better in 400 W and 600 W groups. The content of immobilized water increased in comparison with the control. Ultrasound had no obvious effect on the digestibility of meat puree in gastric phase, but it increased the digestibility in intestinal phase with the highest digestibility (80.85%±3.33) in 600 W, 15 min group. Overall, the ultrasound parameters of 600 W for 15 min can be selected as the best condition to process infant meat puree. The findings provide a new perspective for the improvement of infant meat puree.  相似文献   

18.
A trash rack is used to obstruct dirt in a flow. As it is on the outside of the hull of a ship, such flow-induced noise cannot be ignored. This paper focuses on a hydrodynamic noise study of the trash rack installed on the inlet of pipelines to estimate the noise produced by the turbulent flow. A hybrid method of combining Large-Eddy Simulation (LES) and the Lighthill’s acoustic analogy theory simulate the flow-induced noise for a three-dimensional pipeline. The results of the simulation agree well with the experimental results available in the open literature. Following this, the hydrodynamic noise of flow through a three-dimensional pipeline with different types of trash racks is studied in order to determine the best form. For this objective, the flow and sound properties in different simulation models are analyzed and a low noise type of trash rack is proposed based on some general indexes.  相似文献   

19.
Sediments play a fundamental role in the aquatic environment, so that the presence of contaminants poses severe concern for the possible negative effects on both environmental and human health. Sediment remediation is thus necessary to reduce pollutant concentrations and several techniques have been studied so far. A novel approach for sediment remediation is the use of Advanced Oxidation Processes, which include ultrasound (US). This paper focuses on the study of the ultrasonic effects for the simultaneous reduction of both organic and inorganic contaminants from sediments. To this end, the US technology was investigated as a stand-alone treatment as well as in combination with an electro-kinetic (EK) process, known to be effective in the removal of heavy metals from soil and sediments. The US remediation resulted in higher organic compound degradation, with an average 88% removal, but promising desorption yields (47–84%) were achieved for heavy metals as well. The combined EK/US process was found to be particularly effective for lead. Experimental outcomes highlighted the potential of the ultrasonic technology for the remediation of contaminated sediments and addressed some considerations for the possible scale-up.  相似文献   

20.
Hydrodynamic cavitation (HC) has emerged as one of the most potential technologies for industrial-scale water treatment. The advanced rotational hydrodynamic cavitation reactors (ARHCRs) that appeared recently have shown their high effectiveness and economical efficiency compared with conventional devices. For the interaction-type ARHCRs where cavitation is generated from the interaction between the cavitation generation units (CGUs) located on the rotor and the stator, their flow field, cavitation generation mechanism, and interaction process are still not well defined. The present study experimentally and numerically investigated the cavitation flow characteristics in a representative interaction-type ARHCR which has been proposed in the past. The cavitation generation mechanism and development process, which was categorized into “coinciding”, “leaving”, and “approaching” stages, were analyzed explicitly with experimental flow visualization and computational fluid dynamics (CFD) simulations. The changes in the cavitation pattern, area ratio, and sheet cavitation length showed high periodicity with a period of 0.5 ms/cycle at a rotational speed of 3,600 rpm in the flow visualization. The experimental and CFD results indicated that sheet cavitation can be generated on the downstream sides of both the moving and the static CGUs. The sheet cavitation was induced and continuously enlarged in the “leaving” and “approaching” stages and was crushed after the moving CGUs coincided with the static CGUs. In addition, vortex cavitation was formed in the vortex center of each CGU due to high-speed rotating fluid motion. The shape and size of the vortex cavitation were determined by the compression effect produced by the interaction. The findings of this work are important for the fundamental understanding, design, and application of the ARHCRs in water treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号