首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Ag/PbBiO2I nanocomposite was synthesized and firstly applied in piezocatalytic degradation of rhodamine B (RhB) under ultrasonic vibration. The two-dimensional structure endows PbBiO2I nanosheets piezoelectric property, so that it can drive the piezocatalytic reaction under ultrasonic vibration. The loading of Ag nanoparticles forms Schottky barriers between the Ag-PbBiO2I contact region, which improves the separation of charge carriers and subsequently increases the piezocatalytic efficiency. The RhB degradation rate of the optimal Ag/PbBiO2I sample is 0.0165 min−1, which reaches 6.8 times that of pure PbBiO2I. This work indicates that the PbBiO2I nanosheet shows promising potential in utilizing ultrasonic vibration energy.  相似文献   

2.
This work designed and prepared a novel heterojunction composite NiO/BaTiO3 through a method of photodeposition and used it in piezocatalytic dye removal for the first time. Results of the piezocatalytic test indicated that the NiO/BaTiO3 composite presented superior efficiency and stability in the RhB degradation under the vibration of ultrasonic waves. The best NiO/BaTiO3 sample synthesized under light irradiation for 2 h displayed an RhB degradation rate of 2.41 h−1, which was 6.3 times faster than that of pure BaTiO3. By optimizing the piezocatalytic reaction conditions, the degradation rate constant of NiO/BaTiO3 can further reach 4.14 h−1 A variety of systematic characterizations were executed to determine the reason for the excellent piezocatalytic performance of NiO/BaTiO3. The band potentials of NiO and BaTiO3 are found to coincide, and at their contact interface, they may create a type-II p-n heterojunction structure. Driven by the potential difference and the built-in electric field, piezoelectrically enriched charge carriers can migrate between NiO and BaTiO3, resulting in improved efficiency in charge separation and an increase in the piezoelectric catalytic performance. This study may provide a potential composite catalyst and a promising idea for the design of highly efficient catalysts in the field of piezoelectric catalysis.  相似文献   

3.
Nano-sized ZnO powder was introduced to act as the sonocatalyst after the treatment of high-temperature activation, and the ultrasound of low power was used as an irradiation source to induce nano-sized ZnO powder performing sonocatalytic degradation of acid red B and rhodamine B. At the same time, the effects of operational parameters such as solution pH value, initial concentration of dyestuff and addition amount of nano-sized ZnO powder have been examined in this paper. We found that the degradation ratios of acid red B and rhodamine B in the presence of nano-sized ZnO powder were much higher than that with only ultrasonic irradiation. However, the degradation ratio of acid red B was about two times higher than that of rhodamine B for the initial concentration of 10.0 mg/L, addition amount of 1.0 g/L nano-sized ZnO powder, solution acidity of pH 7.0 and 60 min irradiation experimental condition. The difference of the degradation ratios can be illustrated by the difference of chemical forms of acid red B and rhodamine B in aqueous solution and the surface properties of nano-sized ZnO particles. In addition, the researches on the kinetics of sonocatalytic reactions of acid red B and rhodamine B have also been performed and found to the follow pseudo first-order kinetics. All the experiments indicated that the sonocatalytic method in the presence of nano-sized ZnO powder was an advisable choice for the treatments of non- or low-transparent organic wastewaters in future.  相似文献   

4.
Multi-walled carbon nanotubes loaded with Ag nanoparticles (Ag/MWNTs) were prepared by two methods (direct photoreduction and thermal decomposition). The photocatalytic activity of Ag/MWNTs for the degradation of rhodamine B (RhB) under visible light irradiation was investigated in detail. The adsorption and photocatalytic activity tests indicated that the MWNTs served as both an adsorbent and a visible light photocatalyst. The photocatalytic activity of MWNTs was remarkably enhanced when the Ag nanoparticles were loaded on the surface of MWNTs. Moreover, the visible light photocatalytic activity of Ag/MWNTs depended on the synthetic route. On the basis of the experimental results, a possible visible light photocatalytic degradation mechanism was discussed.  相似文献   

5.
Sono-enhanced degradation of a dye pollutant Rhodamine B (RhB) was investigated by using H2O2 as a green oxidant and Fe3O4 magnetic nanoparticles (MNPs) as a peroxidase mimetic. It was found that Fe3O4 MNPs could catalyze the break of H2O2 to remove RhB in a wide pH range from 3.0 to 9.0 and its peroxidase-like activity was significantly enhanced by the ultrasound irradiation. At pH 5.0 and temperature 55 °C, the ultrasound-assisted H2O2–Fe3O4 catalysis removed about 95% of RhB (0.02 mmol L−1) in 15 min with a apparent rate constant of 0.15 min−1 for the degradation of RhB, being 6.5 and 37.6 folds of that in the simple catalytic H2O2–Fe3O4 system, and the simple ultrasonic US-H2O2 systems, respectively. The beneficial synergistic behavior between Fe3O4 catalysis and ultrasonic was demonstrated to be dependent on Fe3O4 dosage, H2O2 concentration, pH value and temperature. As a tentative explanation, the observed significant synergistic effects was attributed to the positive interaction between cavitation effect accelerating the catalytic breakdown of H2O2 over Fe3O4 nanoparticles, and the function of Fe3O4 MNPs providing more nucleation sites for the cavitation inception.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号