首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A promising approach of ultrasound assisted oxidative desulfurization (UAOD) was studied for deep desulfurization of simulated sulphated turpentine containing dimethyl disulphide (DMDS) as model pollutant. The effect of ultrasound parameters such as power (80–120 W) and duty cycle (50–80%) as well as operating conditions as initial concentration (50–100 ppm), volume (100–300 ml) and temperature (28 °C as ambient condition, 50–70 °C) on the extent of desulfurization have been studied. The effect of addition of various oxidizing agents such as hydrogen peroxide over the range of 3–18 g/L, Fenton reagent by varying FeSO4 loading from 0.75 g/L to 1.75 g/L at constant H2O2 loading and titanium dioxide (loading over the range 1–4 g/L) in the presence of ultrasonic horn have also been investigated at laboratory scale. The addition of oxidizing agents in presence of ultrasound enhanced the extent of DMDS removal. The extent of desulfurization was found to be remarkably low for individual approaches as compared to combination approaches of US/oxidizing agents. The kinetic analysis revealed that oxidation follows first order kinetics. A significant increase in cavitational yield was observed for combination approach of US/H2O2/TiO2 (5.78 × 10−9 g/L) compared to individual ultrasound approach (2.04 × 10−9 g/L). Under best conditions of 120 W power, 70% duty cycle, 50 ppm initial concentration, 15 g/L H2O2 loading and 4 g/L TiO2 loading, 100% desulfurization was obtained at 23.19 Rs/L as the treatment cost. Based on the obtained results it can be concluded that US/H2O2/TiO2 approach is highly efficient desulfurization technique for deep desulfurization of simulated sulphated turpentine.  相似文献   

2.
In the present work, combination of ultraviolet (UV) irradiations (using 8 W UV tube) with ultrasonic (US) irradiations (rated power 1 kW and frequency of 25 kHz) has been investigated for the degradation of phenol at pilot scale of operation. Different modes of operation viz. UV alone, US alone, UV/US, UV/TiO2 (photocatalysis), UV/H2O2, UV/NaCl, UV/US/TiO2 (sonophotocatalysis) and H2O2 assisted sonophotocatalysis have been investigated with an objective of maximizing the extent of phenol degradation. Effect of presence of hydrogen peroxide and sodium chloride at a concentration of 10 g/l and TiO2 over a range of 0.5–2.5 g/l has been investigated. It has been observed that 2.0 g/l of TiO2 is the optimum concentration, beyond which a decrease in the extent of degradation is observed. Maximum extent of degradation of phenol was 37.75% for H2O2 assisted photosonocatalysis at pH of 2. The present work is first of its kind to report the use of combined ultrasonic and UV irradiations at pilot scale operation and obtained results should induce some degree of certainty in proposed industrial applications of sonochemical reactors for wastewater treatment.  相似文献   

3.
《Ultrasonics sonochemistry》2014,21(5):1797-1804
The present work deals with degradation of aqueous solution of Rhodamine 6G (Rh 6G) using sonocatalytic and sonophotocatalytic treatment schemes based on the use of cupric oxide (CuO) and titanium dioxide (TiO2) as the solid catalysts. Experiments have been carried out at the operating capacity of 2 L and constant initial pH of 12.5. The effect of catalyst loading on the sonochemical degradation has been investigated by varying the loading over the range of 1.5–4.5 g/L. It has been observed that the maximum degradation of 52.2% was obtained at an optimum concentration of CuO as 1.5 g/L whereas for TiO2 maximum degradation was observed as 51.2% at a loading of 4 g/L over similar treatment period. Studies with presence of radical scavengers such as methanol (CH3OH) and n-butanol (C4H9OH) indicated lower extents of degradation confirming the dominance of radical mechanism. The combined approach of ultrasound, solid catalyst and scavengers has also been investigated at optimum loadings to simulate real conditions. The optimal solid loading was used for studies involving oxidation using UV irradiations where 26.4% and 28.9% of degradation was achieved at optimal loading of CuO and TiO2, respectively. Studies using combination of UV and US irradiations have also been carried out using the optimal concentration of the catalysts. It has been observed that maximum degradation of 63.3% is achieved using combined US and UV with TiO2 (4 g/L) as the photocatalyst. Overall it can be said that the combined processes give higher extent of degradation as compared to the individual processes based on US or UV irradiations.  相似文献   

4.
Industrial wastewaters containing biorefractory compounds like cyanide offer significant environmental problems attributed to the fact that the conventional methods have limited effectiveness and hence developing efficient treatment approaches is an important requirement. The present work investigates the use of novel treatment approach of ultrasound (US) combined with advanced oxidation techniques for the degradation of potassium ferrocyanide (KFC) for the first time. An ultrasonic bath equipped with longitudinal horn (1 kW rated power and 25 kHz frequency) has been used. The effect of initial pH (2–9) on the progress of degradation has been investigated initially and subsequently using the optimized pH, effect of addition of hydrogen peroxide (ratio of KFC:H2O2 varied over the range of 1:0.5–1:5) and TiO2 in the presence of H2O2 (1:1 ratio by weight of TiO2) as process intensifying approach has been studied. Combination of ultrasonic irradiation with ozone (O3) (100–400 mg/h) and ultraviolet irradiation (UV) has also been investigated. Use of combination of US with H2O2, H2O2 + TiO2 and ozone resulted in extent of KFC degradation as 54.2%, 74.82% and 82.41% respectively. Combination of US with both UV and ozone was established to be the best approach yielding 92.47% degradation. The study also focused on establishing kinetic rate constants for all the treatment approaches which revealed that all the approaches followed first order kinetic mechanism with higher rate constants for the combination approaches. Overall, it has been conclusively established that ultrasound based combined treatment schemes are very effective for the treatment of KFC containing wastewaters.  相似文献   

5.
Recovery properties after H2S catalytic poisoning of catalytic-type gas sensor with photo-catalysts and UV radiation have been examined. Each sensing material of the sensor consists of Pd, Pt supported on γ-Al2O3 and Pd/titanate, Pt/titanate nanotubes or TiO2 particles. Pd/titanate and Pt/titanate nanotubes photo-catalyst were synthesized by hydrothermal synthesis method. All the sensors were deactivated after 500 ppm H2S exposure for 20 h. The sensors with Pd/titanate or Pt/titanate nanotubes showed regenerated voltage response under UV radiation. However the sensor with TiO2 particles showed negligible regenerated voltage response. Regenerated voltage response with Pd/titanate or Pt/titanate nanotubes may stem from location of Pd or Pt catalyst on the titanate nanotube photo-catalyst.  相似文献   

6.
In the present work, ultrasound irradiation, photocatalysis with TiO2, Fenton/Photo-Fenton reaction, and the combination of those techniques were investigated for the decolorization of industrial dyes in order to study their synergy. Three azo dyes were selected from the weaving industry. Their degradation was examined via UV illumination, Fenton and Photo-Fenton reaction as well as ultrasound irradiation at low (20 kHz) and high frequencies (860 kHz). In these experiments, we investigated the simultaneous action of the ultrasound and UV irradiation by varying parameters like the duration of photocatalysis and ultrasound irradiation frequency. At the same time, US power, temperature, amount of TiO2 photocatalyst and amount of Fenton reagent remained constant. Due to their diverse structure, each azo dye showed different degradation levels using different combinations of the above-mentioned Advanced Oxidation Processes (AOPs). The Photo-Fenton reagent is more effective with US 20 kHz and US 860 kHz for the azo dyes originated from the weaving industry at pH = 3 as compared to pH = 6.8. The combination of the Photo-Fenton reaction with 860 kHz ultrasound irradiation for the same dye gave an 80% conversion at the same time. Experiments have shown a high activity during the first two hours. After that threshold, the reaction rate is decreased. FT-IR and TOC measurements prove the decolorization due to the destruction of the chromophore groups but not complete mineralization of the dyes.  相似文献   

7.
In this work, the effect of ultrasound irradiation on the catalytic oxidative/adsorptive denitrogenation (COADN) of model hydrocarbon fuels (composed of pyrrole or indole as an organonitrogen compounds dissolved in n-nonane) has been investigated using magnetic reduced graphene oxide supported with phosphomolybdic acid (PMo-Fe3O4/rGO) as a heterogeneous catalyst/adsorbent and hydrogen peroxide as an oxidant. The synthesized PMo-Fe3O4/rGO nanocomposite was characterized by XRD, FE-SEM, VSM and BET surface area analysis methods. Moreover, different experimental variables including catalyst dose, initial pyrrole/indole concentration, H2O2 to pyrrole/indole molar ratio, ultrasound power and sonication time have been studied on the COADN process. The regeneration/recyclability of PMo-Fe3O4/rGO catalyst was also examined. Experimental results revealed that, the ultrasound treatment significantly improved the adsorption process of organonitrogen compounds from model fuels (qe increased by 50.3% for pyrrole and 18% for indole). Furthermore, high ultrasound-aided catalytic oxidative denitrogenation efficiency (85.6% for pyrrole and 90% for indole) has been attained under optimal conditions (ultrasonic power = 200 W, sonication time = 240 min, catalyst dose = 2 g/L, and H2O2:pyrrole/indole molar ratio = 5). The recyclability of catalyst displayed that the prepared catalyst can be reused five times without any significant reduction in its performance.  相似文献   

8.
The aim of the current study was directed to develop a new sea sediment/titanate photocatalyst to remove cephalexin from aqueous media in the presence of ultraviolet (UV) light, hydrogen peroxide (H2O2), and ultrasonic waves. The influence of furnace temperature (300, 350, 400, and 500 °C), furnace residence time (1, 2, 3, and 4 h), and ratio of sea sediment: titanium (0–6 v: w) on the physicochemical properties and the cephalexin removal by the sea sediment/titanate photocatalyst was explored. The technique of FTIR, SEM/EDX, XRD, BET, BJH, and Mapping was used to determine the physicochemical properties of the generated photocatalyst. The maximum cephalexin removal (94.71%) was obtained at the furnace temperature of 500 °C, the furnace residence time of 2 h, and the sea sediment: titanium ratio of 1:6 (=12 mL TiO2/2 g sea sediment). According to the acquired results, the surface area of the optimized catalyst, namely Cat-500-2-12, was computed to be 52.29 m2/g. The crystallite size of titanium oxide on the optimum photocatalyst was calculated ~17.68 nm. The FTIR test confirmed the presence of C=C, O-H, C=O, C-S, and C-H functional groups in the photocatalyst. The transformation pathway for the degradation of cephalexin by the developed system was drawn. The present investigation showed that the developed technique (sea sediment/titanate-UV-H2O2-ultrasonic) could be used as a promising alternative for attenuating cephalexin from aqueous solutions.  相似文献   

9.
The present study demonstrated the enhanced hydroxyl (OH) radical generation by combined use of dual-frequency (0.5 MHz and 1 MHz) ultrasound (US) and titanium dioxide (TiO2) nanoparticles (NPs) as sonocatalyst. The OH radical generation became the maximum, when 0.5 MHz US was irradiated at an intensity of 0.8 W/cm2 and 1 MHz US was irradiated at intensities at 0.4 W/cm2 in the presence of TiO2 NPs under the examined conditions. After incorporation of TiO2 NPs modified with targeting protein pre-S1/S2, HepG2 cancer cells were subjected to the dual-frequency US at optimum irradiation intensities (“targeted-TiO2/dual-US treatment”). Growth of the HepG2 cells was reduced by 46% compared with the control condition after irradiation of dual-frequency US for 60 s with TiO2 NPs incorporation. In contrast, HepG2 cell growth was almost the same as that in the control condition when cells were irradiated with either 0.5 MHz or 1 MHz ultrasound alone without TiO2 NP incorporation.  相似文献   

10.
A novel H3PW12O40/TiO2 (anatase) composite photocatalyst was prepared by a high-intensity ultrasonic method using a lower temperature (80 °C) and was characterized by XRD and FT-IR. Its photocatalytic activity, using solar light, was evaluated through the degradation of organic dye methylene blue (MB) in aqueous. When MB solution (50 mg/l, 200 ml) containing H3PW12O40/TiO2 (anatase) (0.4 g) was degraded by solar irradiation after 90 min, the removal of concentration and TOC of MB reached 95% and 73%, respectively. The photocatalyst activity of H3PW12O40/TiO2 (anatase) was much higher than TiO2 which was prepared in the same way. H3PW12O40/TiO2 remained efficient after five repeated experiments.  相似文献   

11.
A new photocatalyst La2AlTaO7 with orthorhombic structure was synthesized by the solid-state reaction method. The formation rate of H2 evolution from CH3OH/H2O solution under the irradiation of a 350 W high-pressure Hg lamp is about 108.9 μmol h?1 for La2AlTaO7 (0.1 g). It also showed activity leading to the decomposition of pure water into H2 and O2 even in the absence of co-catalysts under UV light irradiation. The photocatalyst loaded with 0.2 wt% NiO co-catalyst was found to have the highest activity. It was found from the electronic band structure study, using the density functional theory (DFT) with plane-wave basis, that the valence band top mainly consists of O 2p orbitals and the conduction band bottom is mainly constructed of Al 3s3p. The effect of aluminum on electronic structure was discussed in close connection with the UV–vis absorption spectrum.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(5):1778-1786
The present work deals with application of sonochemical reactors for the treatment of imidacloprid containing wastewaters either individually or in combination with other advanced oxidation processes. Experiments have been performed using two different configurations of sonochemical reactors viz. ultrasonic horn (20 kHz frequency and rated power of 240 W) and ultrasonic bath equipped with radially vibrating horn (25 kHz frequency and 1 kW rated power). The work also investigates the effect of addition of process intensifying agents such as H2O2 and CuO, which can enhance the production of free radicals in the system. The combination studies with advanced oxidation process involve the advanced Fenton process and combination of ultrasound with UV based oxidation. The extent of degradation obtained using combination of US and H2O2 at optimum loading of H2O2 was found to be 92.7% whereas 96.5% degradation of imidacloprid was achieved using the combination of US and advanced Fenton process. The process involving the combination of US, UV and H2O2 was found to be the best treatment approach where complete degradation of imidacloprid was obtained with 79% TOC removal. It has been established that the use of cavitation in combination with different oxidation processes can be effectively used for the treatment of imidacloprid containing wastewater.  相似文献   

13.
Phosphotungstic acid (HPW) supported on activated carbon (AC) was applied to catalyze deep oxidation desulfurization of fuel oil with the assist of ultrasound. The sulfur-conversion rate was evaluated by measuring the concentration of dibenzothiophene (DBT) in n-octane before and after the oxidation. Supporting HPW on AC has been verified to play a positive role in UAOD process by a series of contrast tests, where only HPW, AC or a mixture of free HPW and AC was used. The influences of catalyst dose, ultrasound power, reaction temperature, H2O2:oil volume ratio and the reuse of catalyst on the catalytic oxidation desulfurization kinetics were investigated. The DBT conversion rate of the reaction catalyzed by supported HPW under ultrasound irradiation was higher than the summation of the reactions with HPW only and AC only as catalyst. With the increase of loading amount of HPW on AC, ultrasound power, H2O2:oil volume ratio and reaction temperature, the catalytic oxidation reactivity of DBT would be enhanced. The optimum loading amount of HPW was 10%, exceed which DBT conversion would no longer increase obviously. DBT could be completely converted under the optimized conditions (volume ratio of H2O2 to model oil: 1:10, mass ratio of the supported HPW to model oil: 1.25%, temperature: 70 °C) after 9 min of ultrasound irradiation.  相似文献   

14.
TiN/TiO2 nanoparticle photocatalyst was prepared by ball milling of TiO2 in H2O solution doped with TiN. The photocatalyst was characterized by UV–Vis diffuse reflection spectroscopy, X-ray powder diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). Based on the results of the characterization, the mechanism of the increase in photocatalytic activity was investigated. The results show that when the amount of doped TiN is 0.15 wt%, the photocatalytic activity of the TiN/TiO2 is at its peak. Compared with TiO2, the photoabsorption wavelength range of the TiN/TiO2 photocatalyst red-shifts about 30 nm, and the photoabsorption intensity increases as well. The photocatalytic activities of the photocatalyst are higher than that of TiO2 under UV and visible light irradiation. The increase of surface Ti3+ reactive center and the extension of the photoabsorption wavelength are the main factors for the increase in the photocatalytic activity of the TiN/TiO2. Doped TiN neither changes the TiO2 crystal phase nor creates new crystal phase by ball milling.  相似文献   

15.
In this paper, we report toluene destruction using a spontaneous polarization plasma and photocatalyst reactor in air at atmospheric pressure and room temperature. A spontaneous polarization material (BaTiO3) and photocatalyst (TiO2) were added to the plasma system simultaneously. Three types of catalyst, i.e., TiO2, BaTiO3, or TiO2/BaTiO3, were used for toluene removal. The catalyst carrier, type, and amount were important factors in the toluene removal efficiency. The specific energy density and energy yield during the discharge process were investigated. The toluene removal efficiency increased when a spontaneous polarization plasma was combined with the photocatalyst. In terms of toluene removal efficiency, the activity order was TiO2/BaTiO3 > BaTiO3 > TiO2 > none. Large amounts of BaTiO3 in the TiO2/BaTiO3 catalyst gave slightly better conversion. The TiO2/BaTiO3 catalyst not only enhanced the toluene removal efficiency, but also saved energy, making it useful for industrial applications.  相似文献   

16.
The photo-Fenton degradation of carbamazepine (CBZ) assisted with ultrasound radiation (US/UV/H2O2/Fe) was tested in a lab thin film reactor allowing high TOC removals (89% in 35 min). The synergism between the UV process and the sonolytic one was quantified as 55.2%.To test the applicability of this reactor for industrial purposes, the sono-photo-degradation of CBZ was also tested in a thin film pilot plant reactor and compared with a 28 L UV-C conventional pilot plant and with a solar Collector Parabolic Compound (CPC). At a pilot plant scale, a US/UV/H2O2/Fe process reaching 60% of mineralization would cost 2.1 and 3.8 €/m3 for the conventional and thin film plant respectively. The use of ultrasound (US) produces an extra generation of hydroxyl radicals, thus increasing the mineralization rate.In the solar process, electric consumption accounts for a maximum of 33% of total costs. Thus, for a TOC removal of 80%, the cost of this treatment is about 1.36 €/m3. However, the efficiency of the solar installation decreases in cloudy days and cannot be used during night, so that a limited flow rate can be treated.  相似文献   

17.
Waste minimization strategy was applied in the current work for synthesis of the catalysts from industrial solid waste, namely desulfurization slag. The starting slag material comprising CaCO3, Ca(OH)2, SiO2, Al2O3, Fe2O3, and TiO2 was processed by various treating agents systematically varying the synthesis parameters. A novel efficient technique – ultrasound irradiation, was applied as an additional synthesis step for intensification of the slag dissolution and crystallization of the new phases. Physico-chemical properties of the starting materials and synthesized catalysts were evaluated by several analytical techniques. Treatment of the industrial slag possessing initially poor crystal morphology and a low surface area (6 m2/g) resulted in formation of highly-crystalline catalysts with well-developed structural properties. Surface area was increased up to 49 m2/g. High basicity of the neat slag as well as materials synthesized on its basis makes possible application of these materials in the reactions requiring basic active sites. Catalytic performance of the synthesized catalysts was elucidated in the synthesis of carbonate esters by carboxymethylation of cinnamyl alcohol with dimethyl carbonate carried out at 150 °C in a batch mode. Ultrasonication of the slag had a positive effect on the catalytic activity. Synthesized catalysts while exhibiting similar selectivity to the desired product (ca. 84%), demonstrated a trend of activity increase for materials prepared using ultrasonication pretreatment. The choice of the treating agent also played an important role in the catalytic performance. The highest selectivity to the desired cinnamyl methyl carbonate (88%) together with the highest activity (TOF35 = 3.89*10−7 (mol/g*s)) was achieved over the material synthesized using 0.6 M NaOH solution as the treating agent with the ultrasound pre-treatment at 80 W for 4 h.  相似文献   

18.
Simultaneous direct irradiation with microwaves and ultrasound was used to determine total Kjeldahl nitrogen. The method involves chemical digestion in two steps, mineralization with sulfuric acid and oxidation with H2O2. The most influential variables for the microwave/ultrasound (MW/US)-assisted digestion were optimized using tryptophan as the model substance. The optimum conditions were: H2SO4 volume, 10 mL; H2O2 volume, 5 mL; weight of sample, 0.05 g; MW power, 500 W; US power, 50 W; digestion time, 7 min (i.e., 5 min mineralization and 2 min oxidation). A modification of the classical Kjeldahl (Hach) method and an US-assisted digestion method were used for comparison. The latter was also optimized; the optimum conditions were: H2SO4 volume, 10 mL; H2O2 volume, 5 mL; sonication time with H2SO4, 15 min; sonication time with H2O2,10 min; US power, 50 W; weight of sample, 0.05 g. Five pure amino acids and two certified reference materials (NIST standard reference materials 1547 (peach leaves), and soil, NCS DC 73322) were analyzed to assess the accuracy of our new MW/US-assisted digestion method, that was successfully applied to five real samples. The significant reduction in digestion time (being 30 min and 25 min for classical Kjeldahl and US-assisted digestion methods, respectively) and consumption of reagents show that simultaneous and direct MW/US irradiation is a powerful and promising tool for low-pressure digestion of solid and liquid samples.  相似文献   

19.
2-picoline is a very important pyridine derivative with significant applications though it is also poisonous and harmful having considerable adverse influence on aquatic life, environment and organisms. The need for developing effective treatment methodologies for 2-Picoline directed the current work focusing on degradation of 2-Picoline using the combination of ultrasound and advanced oxidants such as hydrogen peroxide (H2O2), potassium persulphate (KPS), Fenton’s reagent, and Peroxymonosulphate (PMS) along with the use of Titanium oxide (TiO2) as catalyst. Ultrasonic bath having 8 L capacity and operating frequency of 40 ± 2 kHz has been used. The effect of parameters like power, initial pH, temperature, time and initial concentration of 2-Picoline were studied to establish best operating conditions which were further used in the combination treatment approaches of ultrasound with oxidising agents. The chemical oxygen demand (COD) reduction for the optimized approaches of ultrasound in combination with oxidizing agents was also determined. Degradation experiments were performed using oxidising agents also in absence of ultrasound to investigate the individual treatment capacity of the oxidants and also the synergetic index for the combination. Kinetic study demonstrated that second order model suited for all the treatment approaches except US/Fenton where first order model fitted better. Ultrasound in combination with Fenton reagent demonstrated a substantial synergy for the degradation of 2-Picoline compared to other treatment approaches showing highest degradation of 97.6 %, synergetic index as 5.71, cavitational yield of 1.82 × 10−5 mg/J and COD removal of 82.4 %.  相似文献   

20.
Response surface methodology (RSM) was employed to optimize ultrasound/ultraviolet-assisted oxidative desulfurization in an airlift reactor. Ultrasonic waves were incorporated in a novel-geometry reactor to investigate the synergistic effects of sono-chemistry and enhanced gas-liquid mass transfer. Non-hydrotreated kerosene containing sulfur and aromatic compounds was chosen as a case study. Experimental runs were conducted based on a face-centered central composite design and analyzed using RSM. The effects of two categorical factors, i.e., ultrasound and ultraviolet irradiation and two numerical factors, i.e., superficial gas velocity and oxidation time were investigated on two responses, i.e., desulfurization and de-aromatization yields. Two-factor interaction (2FI) polynomial model was developed for the responses and the desirability function associate with overlay graphs was applied to find optimum conditions. The results showed enhancement in desulfurization ability corresponds to more reduction in aromatic content of kerosene in each combination. Based on desirability approach and certain criteria considered for desulfurization/de-aromatization, the optimal desulfurization and de-aromatization yields of 91.7% and 48% were obtained in US/UV/O3/H2O2 combination, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号