首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Hydrodynamic cavitation (HC) has been extensively investigated for effluent treatment applications. Performance of HC devices or processes is often reported in terms of degradation of organic pollutants rather than quantification of hydroxyl (OH) radicals. In this study, generation of OH radicals in vortex based cavitation device using coumarin dosimetry was quantified. Coumarin was used as the chemical probe with an initial concentration of 100 µM (15 ppm). Generation of OH radicals was quantified by analysing generated single hydroxylated products. The influence of operating parameters such as pH and type of acid used to adjust pH, dissolved oxygen, and inlet and outlet pressures was investigated. Acidic pH was found to be more conducive for generating OH radicals and therefore subsequent experiments were performed at pH of 3. Sulphuric acid was found to be more than three times effective than hydrochloric acid in generating OH radicals. Effect of initial levels of dissolved oxygen was found to influence OH radical generation. Performance of vortex based cavitation device was then compared with other commonly used cavitation devices based on orifice and venturi. The vortex based cavitation device was found to outperform the orifice and venturi based devices in terms of initial per-pass factor. Influence of device scale (nominal flow rate through the device) on performance was then evaluated. The results presented for these devices unambiguously quantifies their cavitational performance. The presented results will be useful for evaluating computational models and stimulate further development of predictive computational models in this challenging area.  相似文献   

2.
Ammonia is a commonly used compound in the domestic and industrial fields. If ammonia found in wastewater after use is not treated, even at low concentrations it may cause toxic effects in the receiving environment. In this study, a hydrodynamic cavitation reactor (HDC) was designed with the aim of removing ammonia. The effect of parameters like different cavitation numbers, airflow, temperature and initial concentration on NH3 removal was researched. The potential of hydrodynamic cavitation for removal of volatile gases, like NH3, was assessed with the aid of two film theory mathematical equations. Experimental studies were performed at fixed pH = 11. Under the conditions of 0.12 cavitation number, 25 L/min airflow, 30 °C temperature and 2500 mg/L initial concentration, in 24 h 98.4% NH3 removal efficiency was achieved. With the same experimental conditions without any air, the HDC reactor provided 89.5% NH3 removal at the end of 24 h.The HDC reactor is very effective for the removal of volatile gases from wastewater and it was concluded that even in the absence of aeration, the desired NH3 removal efficiency was provided.  相似文献   

3.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities.  相似文献   

4.
Hydrodynamic cavitation (HC) is being increasingly used in a wide range of applications. Unlike ultrasonic cavitation, HC is scalable and has been used at large scale industrial applications. However, no information about influence of scale on performance of HC is available in the open literature. In this work, we present for the first time, experimental data on use of HC for degradation of complex organic pollutants in water on four different scales (~200 times scale-up in terms of capacity). Vortex based HC devices offer various advantages like early inception, high cavitational yield and significantly lower propensity to clogging and erosion. We have used vortex based HC devices in this work. 2,4 dichloroaniline (DCA) – an aromatic compound with multiple functional groups was considered as a model pollutant. Degradation of DCA in water was performed using vortex-based HC devices with characteristic throat dimension, dt as 3, 6, 12 and 38 mm with scale-up of almost 200 time based on the flow rates (1.3 to 247 LPM). Considering the experimental constraints on operating the largest scale HC device, the experimental data is presented here at only one value of pressure drop across HC device (280 kPa). A previously used per-pass degradation model was extended to describe the experimental data for the pollutant used in this study and a generalised form is presented. The degradation performance was found to decrease with increase in the scale and then plateaus. Appropriate correlation was developed based on the experimental data. The developed approach and presented results provide a sound basis and a data set for further development of comprehensive multi-scale modelling of HC devices.  相似文献   

5.
以新型涡流管为研究主体,通过实验,研究涡流管操作参数对涡流管性能的影响。根据实验数据,分析改变温度压力等操作参数对涡流管能量分离效应的影响。试验结果表明:当提高涡流管进气温度,其冷热两端出气温度升高,但并不影响涡流管的制冷效率;增加涡流管进气压力会提高涡流管制冷效应,并在冷流率为0.2时效果最明显;制冷效率随节流阀开度增加而增加且最终趋于稳定,而制热效率则随节流阀开度增加而减小并最终趋于稳定。  相似文献   

6.
A parametrical study of disinfection with hydrodynamic cavitation   总被引:1,自引:0,他引:1  
The physical and chemical conditions generated by cavitation bubbles can be used to destroy microorganisms and disinfect wastewater. The effect of different cavitation chamber designs and diverse operational parameters on the inactivation rate of Escherichia coli have been studied and used to understand the mechanisms involved in cell disruption.  相似文献   

7.
Hydrodynamic cavitation has been widely employed in modern chemical technology. A high-speed camera experiment is conducted to reveal the characteristics of hydrodynamic cavitation generated in one self-excited fluidic oscillator. The images obtained from the high-speed camera system are employed to describe several development stages of the hydrodynamic cavitation. The gray intensity of the images which is the volume of bubbles formed is extracted to distinguish the cavitation bubbles from the water. It is found that three regions in the fluidic oscillator could be divided according to the distance from the entrance. The inception of cavitation occurs in the region nearest the entrance. For a relatively low inlet flow rate, the whole process of cavitation could complete within the region that is the second nearest the entrance as a low pressure area appears periodically in this region. For a high inlet flow rate, the vortexes in the region farthest from the entrance are able to generate sufficient low pressures to induce the generation of cavitation. In addition, the intensity of cavitation could be reflected by the cavitation number in a self-excited fluidic oscillator.  相似文献   

8.
Hydrodynamic cavitation is an effective method for chitosan degradation, of which the mechanism directly determines the molecular weight distribution of degradation products. In this study, based on the Monte Carlo simulation and experimental results, the mechanism of chitosan degradation with hydrodynamic cavitation and molecular weight distribution of products were analyzed. The results showed that the algorithm established in the simulation could effectively analyze degradation mechanism and the factors that influenced degradation mechanism and molecular weight distribution of products. The degradation with hydrodynamic cavitation was caused by chemical and mechanical effects, of which the former dominated the degradation process. The outlet and inlet angles and throat length of the cavitator had major and minor influences on the degradation pattern, respectively. The chemical effect led to random cuts resulting in wide distribution of the products, while the mechanical effect led to central cuts resulting in narrow distribution of the products. With more central cuts, the slide-shaped molecular weight distribution curve of degradation products was gradually transferred into a bell-shaped curve. These results provide instructions for researches on the molecular weight distribution of chitosan products degraded with hydrodynamic cavitation.  相似文献   

9.
Hydrodynamic cavitation has been investigated extensively in the field of water treatment in the last decade and a well-designed hydrodynamic cavitation reactor is critical to the efficient removal of algal and large-scale application. In this paper, a jet pump cavitation reactor (JPCR) is developed for the removal of cyanobacteria Microcystis aeruginos in a pilot scale. The results demonstrate that the photosynthetic activity of M. aeruginosa is greatly inhibited immediately after treatment in the JPCR, and the growth is also hindered after 3 days culture. Moreover, a high cell disruptions of M. aeruginosa is detected after treated by JPCR. The release of chlorophyll-a indicates that the JPCR caused serious rupture to M. aeruginosa cells. The plausible cell disruption mechanisms are proposed in accordance with a fluorescence microscope and scanning electron microscope. Then, the optimization of cell disruption efficiency is also investigated for various operating conditions. The results showed that the algal cell disruption efficiency is improved at higher inlet pressure and the cavitation stage between the unstable limited operation cavitation stage and stable limited operation cavitation stage. The effect and optimization of JPCR on algal reduction are highlighted. The results of the study promote the application of hydrodynamic cavitation on algal removal and provide strong support for JPCR application in algal removal.  相似文献   

10.
Hydrodynamic cavitation was widely used in sterilization, emulsion preparation and other industrial fields. Cavitation intensity is the key performance index of hydrodynamic cavitation reactor. In this study, a novel rotor-radial groove (RRG) hydrodynamic cavitation reactor was proposed with good cavitation intensity and energy utilization. The cavitation performances of RRG hydrodynamic cavitation reactor was analyzed by utilizing computational fluid dynamics method. The cavitation intensity and the cavitation energy efficiency were used as evaluation indicators for RRG hydrodynamic cavitation reactor with different internal structures. The amount of generated cavitation for various shapes of the CGU, interaction distances and rotor speed were analyzed. The evolution cycle of cavitation morphology is periodicity (0.46 ms) in the CGU of RRG hydrodynamic cavitation reactor. The main cavitation regions of CGU were the outflow and inflow separation zones. The cavitation performance of rectangular-shaped CGU was better than the cylindrical-shaped CGU. In addition, the cavitation performance could be improved more effectively by increasing the rotor speed and decreasing the interaction distance. The research results could provide theoretical support for the research of cavitation mechanism of cavitation equipment.  相似文献   

11.
Luminescence and chemiluminescence have been experimentally investigated in hydrodynamic cavitating flows. By using dedicated microdevices inserted inside a light tight box, photons counting has been made possible. Luminescence has been investigated with deionized water as the working fluid; chemiluminescence has resulted from cavitating alkaline luminol solutions, and has been correlated to hydroxyl radicals formation. For the first time, luminescent and chemiluminescent phenomena have been considered together on the same devices submitted to similar cavitating flow regimes. Degassed solutions enhance the luminescence and also the hydroxyl radical yield. Due to the small sizes of the channels, the lifetimes of the collapsing bubbles correspond to pseudo frequencies matching the range of optimal frequencies used in sonochemistry. New perspectives for the study of hydrodynamic cavitation as an advanced oxidation process are suggested.  相似文献   

12.
Hydrodynamic cavitation is a promising technique for water disinfection. In the present paper, the disinfection characteristics of an advanced hydrodynamic cavitation reactor (ARHCR) in pilot scale were studied. The effects of various flow rates (1.4–2.6 m3/h) and rotational speeds (2600–4200 rpm) on the removal of Escherichia coli (E. coli) were revealed and analyzed. The variation regularities of the log reduction and reaction rate constant at various cavitation numbers were established. A disinfection rate of 100% was achieved in only 4 min for 15 L of simulated effluent under 4200 rpm and 1.4 m3/h, with energy efficiency at 0.0499 kWh/L. A comprehensive comparison with previously introduced HCRs demonstrates the superior performance of the presented ARHCR system. The morphological changes in E. coli were studied by scanning electron microscopy. The results indicate that the ARHCR can lead to serious cleavage and surface damages to E. coli, which cannot be obtained by conventional HCRs. Finally, a possible damage mechanism of the ARHCR, including both the hydrodynamical and sonochemical effects, was proposed. The findings of the present study can provide strong support to the fundamental understanding and applications of ARHCRs for water disinfection.  相似文献   

13.
Hydrodynamic cavitation (HC) and Fe(II) are advanced oxidation processes, in which pentachlorophenol (PCP) is treated by the redox method of activating persulfate (PS). The kinetics and mechanism of the HC and Fe(II) activation of PS were examined in aqueous solution using an electron spin resonance (ESR) spin trapping technique and radical trapping with pure compounds. The optimum ratio of Fe(II)/PS was 1:2, and the hydroxyl radical (HO) and sulfate radical (SO4) generation rate were 5.56 mM h−1 and 8.62 μM h−1, respectively. The generation rate and Rct of HO and SO4 at pH 3 and 50 °C in the Fe(II)/PS/HC system are 7584.6 μM h−1, 0.013 and 24.02 μM h−1, 3.95, respectively. The number of radicals was reduced as the pH increased, and it increased with increasing temperature. The PCP reaction rate constants was 4.39 × 10−2 min−1 at pH 3 and 50 °C. The activation energy was 10.68 kJ mol−1. In addition, the mechanism of PCP treatment in the Fe(II)/PS/HC system was a redox reaction, and the HO/SO4 contribution was 81.1 and 18.9%, respectively. In this study, we first examined PCP oxidation through HO and SO4 quantification using only the Fe(II)/PS/HC process. Furthermore, the results provide the foundation for activation of PS by HC and Fe(II), but also provide a data basis for similar organic treatments other than PCP.  相似文献   

14.
陈岐岱  王龙 《中国物理》2004,13(4):564-570
Large size single transient cavitation bubbles of maximum diameter up to 3 cm with sonoluminescence have been generated in water by the ‘tube arrest' method. A simplified one-dimensional model of bubble growing and water column motion is proposed. The results of numerical simulation are compared with the experimental data of the bubble size and oscillation period as the key parameters.  相似文献   

15.
The degradation of benzene present in wastewater using hydrodynamic cavitation (HC) alone as well as in combination with air has been studied using nozzles as cavitating device of HC reactor. Initially, the energy efficiency of the HC reactor operated at different inlet pressures was determined using the calorimetric studies. Maximum energy efficiency of 53.4% was obtained at an inlet pressure of 3.9 bar. The treatment processes were compared under adiabatic as well as isothermal conditions and it was observed that under the adiabatic condition, the extent of degradation is higher as compared to isothermal condition. Studies related to the understanding the effect of inlet pressure (range of 1.8–3.9 bar) revealed that the maximum degradation as 98.9% was obtained at 2.4 bar pressure using the individual operation of HC under adiabatic conditions and in 70 min of treatment. The combination of HC with air was investigated at different air flow rates with best results for maximum degradation of benzene achieved at air flow rate of 60 mL/sec. A novel approach of using cavitation for a limited fraction of total treatment time was also demonstrated to be beneficial in terms of the extent of degradation as well as energy requirements and cost of operation. Based on the cavitational intensity, the resonant radius of aggregates of cavitation bubbles was also determined for distilled water as well as for aqueous solution of benzene. Overall, significant benefits of using HC combined with air have been demonstrated for degradation of benzene along with fundamental understanding into cavitation effects.  相似文献   

16.
《Ultrasonics sonochemistry》2014,21(5):1635-1640
In this current study, we present a modified hydrodynamic cavitation device that combines an electric field to substitute for the chemical addition. A modified HC system is basically an orifice plate and crisscross pipe assembly, in which the crisscross pipe imparts some turbulence, which creates collision events. This study shows that for maximizing disintegration, combining HC system, which called electric field-assisted modified orifice plate hydrodynamic cavitation (EFM-HC) in this study, with an electric field is important. Various HC systems were compared in terms of disintegration of WAS, and, among them, the EFM-HC system exhibited the best performance with the highest disintegration efficiency of 47.0 ± 2.0% as well as the destruction of WAS morphological characteristics. The experimental results clearly show that a conventional HC system was successfully modified. In addition, electric field has a great potential for efficient disintegration of WAS for as a additional option in a combination treatment. This study suggests continued research in this field may lead to an appropriate design for commercial use.  相似文献   

17.
Hydrodynamic Cavitation (HC) offers an attractive platform for intensifying oxidative desulphurization of fuels. In the first part of this work, we present new results on oxidising single ring thiophene in a model fuel over the extended range of volume fraction of organic phase from 2.5 to 80 v/v %. We also present influence of type and scale of HC device on performance of oxidative desulphurization. Further experiments revealed that oxidising radicals generated in-situ by HC alone were not able to oxidise dual ring thiophenes. External catalyst (formic acid) and oxidising agents (hydrogen peroxide, H2O2) were therefore used with HC. Based on our prior work with acoustic cavitation (AC), the volumetric ratios for H2O2 and formic acid were identified as 0.95 v/v % and 6.25 v/v % respectively. The data of oxidation of dual ring thiophenes with n-dodecane and n-hexane as model fuels and typical transport fuels (diesel, kerosene, and petrol) using these oxidant and catalyst is presented. The observed performance with HC was compared with results obtained from a stirred tank and AC set-up. The presented data indicates that HC is able to intensify oxidation of sulphur species. The presented results provide a sound basis for further developments on HC based oxidative desulphurization processes.  相似文献   

18.
Within the last years there has been a substantial increase in reports of utilization of hydrodynamic cavitation in various applications. It has came to our attention that many times the results are poorly repeatable with the main reason being that the researchers put significant emphasis on the value of the cavitation number when describing the conditions at which their device operates.In the present paper we firstly point to the fact that the cavitation number cannot be used as a single parameter that gives the cavitation condition and that large inconsistencies in the reports exist. Then we show experiments where the influences of the geometry, the flow velocity, the medium temperature and quality on the size, dynamics and aggressiveness of cavitation were assessed. Finally we show that there are significant inconsistencies in the definition of the cavitation number itself.In conclusions we propose a number of parameters, which should accompany any report on the utilization of hydrodynamic cavitation, to make it repeatable and to enable faster progress of science and technology development.  相似文献   

19.
This study investigates hydrodynamic performance of a novel pinned disc rotating generator of hydrodynamic cavitation in comparison with a serrated disc variant on a pilot-scale. Experimental results show that at a given rotational speed and liquid flow rate, the pinned disc generates more intense cavitation (i.e. lower cavitation number, higher volume fraction of vapor and higher amplitude of pressure fluctuations) than the serrated disc, while also consuming less energy per liquid pass (i.e., higher flow rate and pumping pressure difference of water at similar power consumption). Additionally, mechanical and chemical wastewater treatment performance of the novel cavitator was evaluated on an 800 L influent sample from a wastewater treatment plant. Mechanical effects resulted in a reduction of average particle size from 148 to 38 µm and increase of specific surface area, while the oxidation potential was confirmed by reduction of COD, TOC, and BOD up to 27, 23 and 30% in 60 cavitation passes, respectively. At optimal operating conditions and 30 cavitation passes, pinned disc cavitator had a 310% higher COD removal capacity while consuming 65% less energy per kg of COD removed than the serrated disc cavitator. Furthermore, the specific COD-reduction energy consumption of the pinned disc cavitator on the pilot scale is comparable to the best cases of lab-scale orifice and venturi devices operating at much lower wastewater processing capacity.  相似文献   

20.
Triglyceride transesterification for biodiesel production is a model reaction which is used to compare the conversion efficiency, yield, reaction time, energy consumption, scalability and cost estimation of different reactor technology and energy source. This work describes an efficient, fast and cost-effective procedure for biodiesel preparation using a rotating generator of hydrodynamic cavitation (HC). The base-catalyzed transesterification (methanol/sodium hydroxide) has been carried out using refined and bleached palm oil and waste vegetable cooking oil. The novel HC unit is a continuous rotor-stator type reactor in which reagents are directly fed into the controlled cavitation chamber. The high-speed rotation of the reactor creates micron-sized droplets of the immiscible reacting mixture leading to outstanding mass and heat transfer and enhancing the kinetics of the transesterification reaction which completes much more quickly than traditional methods. All the biodiesel samples obtained respect the ASTM standard and present fatty acid methyl ester contents of >99% m/m in both feedstocks. The electrical energy consumption of the HC reactor is 0.030 kW h per L of produced crude biodiesel, making this innovative technology really quite competitive. The reactor can be easily scaled-up, from producing a few hundred to thousands of liters of biodiesel per hour while avoiding the risk of orifices clogging with oil impurities, which may occur in conventional HC reactors. Furthermore it requires minimal installation space due to its compact design, which enhances overall security.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号