首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The objective of this work was to develop a simple and efficient method to prepare waxy maize starch nanoparticles (SNPs) by hydrochloric acid (HCl) vapor hydrolysis combined with ultrasonication treatment. The size, morphology, thermal property, and crystal structure of the SNPs were systematically studied. HCl treatment introduces a smaller particle diameter of starch particles from 13.73 ± 0.93 μm to 1.52 ± 0.01–8.32 ± 0.63 μm. Further ultrasonication treatment formed SNPs that displayed desirable uniformity and near-perfect spherical and ellipsoidal shapes with a diameter of 150.65 ± 1.91–292.85 ± 0.07 nm. The highest yield of SNPs was 80.5%. Compared with the native starch, the gelatinization enthalpy changes of SNPs significantly decreased from 14.65 ± 1.58 J/g to 7.40 ± 1.27 J/g. Interestingly, the SNPs showed a wider melting temperature range of 22.77 ± 2.35 °C than native starch (10.94 ± 0.87 °C). The relative crystallinity of SNPs decreased to 29.65%, while long-time ultrasonication resulted in amorphization. HCl vapor hydrolysis combined with ultrasonication treatment can be an affordable and accessible method for the efficient large-scale production of SNPs. The SNPs developed by this method will have potential applications in the food, materials, and medicine industries.  相似文献   

2.
The effect of ultrasonication and Fenton oxidation as physico-chemical pre-treatment processes on the change of rheology of wastewater sludge was investigated in this study. Pre-treated and raw sludges displayed non-Newtonian rheological behaviour with shear thinning as well as thixotropic properties for total solids ranging from 10 g/L to 40 g/L. The rheological models, namely, Bingham plastic, Casson law, NCA/CMA Casson, IPC Paste, and power law were also studied to characterize flow of raw and pre-treated sludges. Among all rheological models, the power law was more prominent in describing the rheology of the sludges. Pre-treatment processes resulted in a decrease in pseudoplasticity of sludge due to the decrease in consistency index K varying from 42.4 to 1188, 25.6 to 620.4 and 52.5 to 317.9; and increase in flow behaviour index n changing from 0.5 to 0.35, 0.62 to 0.55 and 0.63 to 0.58, for RS, UlS and FS, respectively at solids concentration 10–40 g/L. The correlation between improvement of biodegradability and dewaterability, decrease in viscosity, and change in particle size as a function of sludge pre-treatment process was also investigated. Fenton oxidation facilitated sludge filterability resulting in capillary suction time values which were approximately 50% of the raw sludges, whereas ultrasonication with high input energy deteriorated the filterability. Biodegradability was also enhanced by the pre-treatment processes and the maximum value was obtained (64%, 77% and 73% for raw, ultrasonicated and Fenton oxidized sludges, respectively) at total solids concentration of 25 g/L. Hence, pre-treatment of wastewater sludge modified the rheological properties so that: (1) the flowability of sludge was improved for transport through the treatment train (via pipes and pumps); (2) the dewaterability of wastewater sludge was enhanced for eventual disposal and; (3) the assimilation of nutrients by microorganisms for further value-addition was increased.  相似文献   

3.
In this study, modified citrus pectin treated with a combination of microfluidization and ultrasonication was compared to the original and ultrasonication treated pectin on hydrodynamic diameter, molecular weight, polydispersity, zeta potential, apparent viscosity, Fourier-transform infrared spectroscopy (FTIR), 2,2-diphenyl-1-picryl hydrazyl (DPPH) radical scavenging capacity, scanning electron microscope (SEM), atomic force microscopy (AFM), their emulsifying properties and encapsulation properties. Modified pectin treated with a combination of microfluidization and moderate ultrasonication (MUB) was found to have lowest hydrodynamic diameter (418 nm), molecular weight (237.69 kDa) and polydispersity (0.12), and relatively low apparent viscosity among all pectin samples. Furthermore, it showed significantly higher DPPH radical scavenging capacity than the original pectin although only slightly higher than that of ultrasonication treated one (UB). MUB showed a thin fibrous morphology and decreased degree of branching from SEM and AFM. Emulsion stabilized by MUB had highest centrifugal and thermal stability compared to emulsions stabilized by UB and the original pectin. This could be attributed to higher interfacial loading of MUB (17.90 mg/m2) forming more compact interfacial layer observed by confocal laser scanning microscopy (CLSM). Moreover, both MUB and UB exhibited improved encapsulation functionality to protect cholecalciferol (vitamin D3) from UV degradation compared to the original pectin.  相似文献   

4.
An ultrasound assisted method was investigated to extract bioactive compounds from propolis. This method was based on a simple ultrasound treatment using ethanol as an extraction medium to facilitate the disruption of the propolis cells. Four different variables were chosen for determining the influence on the extraction efficiency: ultrasonic amplitude, ethanol concentration, temperature and time; the variables were selected by Box-Behnken design experiments. These parameters were optimised in order to obtain the highest yield, and the results exhibited the optimum conditions for achieving the goal as 100% amplitude of ultrasonic treatment, 70% solvent concentration, 58 °C and 30 min. The extraction yield under modified optimum extraction conditions was, as follows: 459.92 mg GAE/g of TPC, 220.62 mg QE/g of TFC and 1.95% of balsam content. The results showed that the ultrasound assisted extraction was suitable for bioactive compounds extraction from propolis. The most abundant phenolic compound was kaempferol (228.8 mg/g propolis) followed by myricetin (115.5 mg/g propolis), luteolin (27.2 mg/g propolis) and quercetin (25.2 mg/g propolis).  相似文献   

5.
In this study, high intensity ultrasonication (HIU) was employed as an efficient tool to improve the gel property and in vitro digestibility of marinated egg (ME). The effects of HIU treatment at 100 W and 200 W for a series of time periods (0.5 h, 1 h, and 2 h) on the textural profiles, structural changes, and microstructures were also studied. After HIU treatment, the springiness and gumminess of ME white were enhanced. The water holding capacity reached the highest point (66.6%) when 0.5 h 200 W HIU was used. It was observed that 100 W HIU led to the highest zeta potential (-12.0 mV) and hydrophobicity (175.35 μg) of ME, indicating a high degree of electrostatic repulsion prevented agglomeration. HIU treatment at 100 W affected the dynamic rheological behaviors by boosting non-covalent bonds, which maintains the gel network's homogeneity. Meanwhile, the decreasing formation of α-helix, in contrast to β-turn, altered the aggregation behaviors of egg white gel. The microstructure of the 200 W HIU treated samples had porous colloidal network structures, and the in vitro digestibility (>75%) was increased after HIU. This work demonstrated that HIU could be a green and cost-effective tool for processing the egg product with high quality.  相似文献   

6.
To extend the shelf life and retain bioactive proteins in milk, this study utilized microfiltration (MF) combined with ultrasonication to treat skim milk and investigated its efficiency in removing bacteria and retaining bioactive proteins compared with HTST pasteurization and microfiltration alone. Results showed that microfiltration combined with ultrasonication at 1296 J/mL could completely remove the bacteria in skim milk. Ultrasonication further extended the shelf life (4 °C) of microfiltered skim milk, which could reach at least 40 days when MF was combined with ˃1296 J/mL ultrasonication. In addition, ELISA showed that HTST pasteurization significantly decreased the levels of IgG by ~30%, IgA by ~ 50%, IgM by ~60%, and lactoferrin by ~40%, whereas the activity of the enzymes lactoperoxidase and xanthine oxidase were also decreased by ~ 20%. Compared with HTST, MF alone or combined with ultrasonication retained these bioactive proteins to a larger degree. On the other hand, proteomics indicated both damage to casein micelle and fat globule structures in milk when ultrasonication at >1296 J/mL was applied, as shown by increases in caseins and milk fat globular proteins. Simultaneously, this ultrasound intensity also decreased levels of bioactive proteins, such as complement factors. Taken together, this study provided new insights that may help to implement this novel combination of non-thermal technologies for the dairy industry aimed at improving milk quality and functionality.  相似文献   

7.
In this study, the pesticide (acetamiprid, deltamethrin, and pyridaben) removal and physicochemical quality improvement of vine (Vitis vinifera) leaf were examined using ultrasonic and traditional cleaning for 5, 10, and 15 min. After an ultrasonic cleaning procedure at 37 kHz for 10 min, acetamiprid, deltamethrin, and pyridaben in vine leaf were reduced by 54.76, 58.22, and 54.55 %, respectively. Furthermore, the total phenolic content (TPC) in vine leaf increased to 13.45 mg GAE/g DW compared to that in control samples using traditional cleaning (10.37 mg GAE/g DW), but there were no significant differences in DPPH radical scavenging activity. After 15 min of conventional cleaning, the total chlorophyll and total carotenoid content of leaves were found to be lowest among all samples, at 6.52 mg/kg and 0.48 mg/kg, respectively. In conclusion, when compared to conventional cleaning methods, ultrasonic cleaning with no chemicals or heat treatment has proven to be a successful and environmentally friendly application in reducing commonly used pesticides and improving the physicochemical qualities of leaves.  相似文献   

8.
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.  相似文献   

9.
Ultrasonication used for the production of fatty acid methyl ester from non-edible vegetable oil using immobilized lipase (Chromobacterium viscosum) as a catalyst from Enterobacter aerogenes to make the process fully ecologically and environmental friendly. The optimal conditions for biodiesel production is the molar ratio oil to methanol 1:4, catalyst concentration 5 wt.% of oil, reaction time 30 min, ultrasonic amplitude 50% (100 W/m(3)) and cycle 0.7s. ultrasonication reduce the reaction time comparing to the conventional batch process. The purity and conversion of the biodiesel was 84.5±0.5 analyzed by reversed phase HPLC.  相似文献   

10.
Ultrasonication, redox-pair generated free radical method and their combination (Ultrasonication/redox-pair method) was used for production of camel whey-quercetin conjugates. FTIR and SDS-PAGE confirmed successful production of whey-quercetin conjugates using ultrasonication and ultrasonication/redox-pair method. FTIR suggested existence of covalent (appearance of new peak at 3399 cm−1) and non-covalent linkages (shifting of peak at 3271 cm−1, 1655 cm−1 (amide I), 1534 cm−1 and 1422 cm−1 (Amide II)) in the whey-quercetin conjugates. Moreover, SDS-PAGE of conjugates produced by ultrasonication as well redox-pair method indicated shifting of protein bands slightly towards high molecular weight due to increase in the mass of proteins due to the binding of polyphenols. All conjugates showed improved techno-functional and bioactive properties in comparison to whey proteins. Conjugates produced through ultrasonication showed smaller particle size, improved solubility, emulsifying and foaming properties while conjugates produced through ultrasonication/redox-pair method depicted superior antioxidant properties in comparison to whey. Furthermore, conjugated samples showed higher inhibition of enzymatic markers involved in diabetes and obesity with highest potential recorded in conjugates produced using ultrasonication. Therefore, ultrasonication can be successfully used individually as well as in combination with redox-pair for production of whey-quercetin conjugates with enhanced bioactive and techno-functional properties.  相似文献   

11.
Phenolic compounds are secondary metabolites involved in plant adaptation processes. The development of extraction procedures, quantification, and identification of this compounds in habanero pepper (Capsicum chinense) leaves can provide information about their accumulation and possible biological function. The main objective of this work was to study the effect of the UAE method and the polarity of different extraction solvents on the recovery of phenolic compounds from C. chinense leaves. Quantification of the total phenolic content (TPC), antioxidant activity (AA) by ABTS+ and DPPH radical inhibition methods, and the relation between the dielectric constant (ε) as polarity parameter of the solvents and TPC using Weibull and Gaussian distribution models was analyzed. The major phenolic compounds in C. chinense leaves extracts were identified and quantified by UPLC-PDA-ESI-MS/MS. The highest recovery of TPC (24.39 ± 2.41 mg GAE g−1 dry wt) was obtained using MeOH (50%) by UAE method. Correlations between TPC and AA of 0.89 and 0.91 were found for both radical inhibition methods (ABTS+ and DPPH). The Weibull and Gaussian models showed high regression values (0.93 to 0.95) suggesting that the highest phenolic compounds recovery is obtained using solvents with “ε” values between 35 and 52 by UAE. The major compounds were identified as N-caffeoyl putrescine, apigenin, luteolin and diosmetin derivatives. The models presented are proposed as a useful tool to predict the appropriate solvent composition for the extraction of phenolic compounds from C. chinense leaves by UAE based on the “ε” of the solvents for future metabolomic studies.  相似文献   

12.
For the first time, purple corn pericarp (PCP) was converted to polyphenol-rich extract using two-pot ultrasound extraction technique. According to Plackett-Burman design (PBD), the significant extraction factors were ethanol concentration, extraction time, temperature, and ultrasonic amplitude that affected total anthocyanins (TAC), total phenolic content (TPC), and condensed tannins (CT). These parameters were further optimized using the Box-Behnken design (BBD) method for response surface methodology (RSM). The RSM showed a linear curvature for TAC and a quadratic curvature for TPC and CT with a lack of fit > 0.05. Under the optimum conditions (ethanol (50%, v/v), time (21 min), temperature (28 °C), and ultrasonic amplitude (50%)), a maximum TAC, TPC, and CT of 34.99 g cyanidin/kg, 121.26 g GAE/kg, and 260.59 of EE/kg, respectively were obtained with a desirability value 0.952. Comparing UAE to microwave extraction (MAE), it was found that although UAE had a lower extraction yield, TAC, TPC, and CT, the UAE gave a higher individual anthocyanin, flavonoid, phenolic acid profile, and antioxidant activity. The UAE took 21 min, whereas MAE took 30 min for maximum extraction. Regarding product qualities, UAE extract was superior, with a lower total color change (ΔE) and a higher chromaticity. Structural characterization using SEM showed that MAE extract had severe creases and ruptures, whereas UAE extract had less noticeable alterations and was attested by an optical profilometer. This shows that ultrasound, might be used to extract phenolics from PCP as it requires lesser time and improves phenolics, structure, and product qualities.  相似文献   

13.
Pomegranate peel (PP) is one of the interesting agri-food by-products because of its abundant bioactive phytochemicals. However, the bioactivity of valuable compounds is affected due to the extraction method used. A pulsed ultrasound-assisted extraction (PUAE) was carried out to intensify the extraction efficacy with reduced power and time. Influence of several process variables viz. peel solids/ solvent ratio, sonication power, duty cycle, and extraction time was studied using empirical quadratic models followed by multicriterial numerical optimization with respect to face-centered composite design. Power-duty cycle combination was found to be most significant (p < 0.05) for process intensification. The optimal process conditions of 2.17 g/100 mL S/S ratio at 116 W power with 80% duty cycle for 6 min resulted into 0.48 g/g yield, 177.54 mg GAE/g total phenolics content, 35.71 mg QE/g total flavonoids, 160.54 mg GAE/g antioxidant capacity, 21.65 mg cyn-3-glc/100 g anthocyanin content with 54.92 browning index in dry pomegranate peel. Significant Pearson correlation analysis was established in all responses with potent phenols and flavonoid relation with highest coefficient (r) 0.931. All response models were significantly validated with regression coefficient (R2) above 0.965. Remarkable antioxidant bioactivities were recorded for the resultant peel extract. Hence, it is strongly recommended that PUAE could be successfully applied for the intensification of the extraction process of bioactive from any peel and or plant systems with minimal process time and power consumption with a green label.  相似文献   

14.
Hydrolytic enzymes released by the microorganisms in activated sludge are responsible for the organic matter degradation; however, the optimal extraction procedure of this valuable resource has not been well established until now. The present study evaluates the recovery of protease and lipase from the activated sludge by using stirring and ultrasonication, varying different parameters such as extraction time, concentration of additives (Triton X100, Cation Exchange Resin and Tris buffer), stirring velocity, ultrasonic power and sludge source. Sludge was collected from two urban wastewater treatment plants located in Prague (Czech Republic) and Reus (Spain). It was found that stirring using 2% v/v Triton X100 for 1 h was enough to extract 57.4 protease units/g VSS, and that the same method using a combination of 10 mM Tris pH 7.5 + 0.48 g/mL CER + 0.5% TX100 as an additive allowed to extract 15.5 lipase units/g VSS from sludge collected from Reus Wastewater Treatment Plant. Ultrasonication allowed reducing the extraction time to 10 min for protease (using 2% v/v Triton X100 yielding 52.9 units/g VSS) and to 20 min for lipase (without any additive yielding nearly 21.4 units/g VSS), which makes this method appropriate for the extraction of enzymes from the activated sludge, and suitable to be scaled up for its application in the industry.  相似文献   

15.
The effects of ultrasound on corn slurry saccharification yield and particle size distribution was studied in both batch and continuous-flow ultrasonic systems operating at a frequency of 20 kHz. Ground corn slurry (28% w/v) was prepared and sonicated in batches at various amplitudes (192–320 μmpeak-to-peak (p–p)) for 20 or 40 s using a catenoidal horn. Continuous flow experiments were conducted by pumping corn slurry at various flow rates (10–28 l/min) through an ultrasonic reactor at constant amplitude of 12 μmp–p. The reactor was equipped with a donut shaped horn. After ultrasonic treatment, commercial alpha- and gluco-amylases (STARGENTM 001) were added to the samples, and liquefaction and saccharification proceeded for 3 h. The sonicated samples were found to yield 2–3 times more reducing sugars than unsonicated controls. Although the continuous flow treatments released less reducing sugar compared to the batch systems, the continuous flow process was more energy efficient. The reduction of particle size due to sonication was approximately proportional to the dissipated ultrasonic energy regardless of the type of system used. Scanning electron microscopy (SEM) images were also used to observe the disruption of corn particles after sonication. Overall, the study suggests that both batch and continuous ultrasonication enhanced saccharification yields and reduced the particle size of corn slurry. However, due to the large volume involve in full scale processes, an ultrasonic continuous system is recommended.  相似文献   

16.
We have synthesized the iron oxide nanoparticles using the newly developed mechanical ultrasonication method with the FeSO4 · 7H2O. We have also investigated the crystallographic structural properties, morphology, and magnetic properties of the nanopowders. According to the high resolution X-ray diffraction result, the as-synthesized iron oxide nanoparticles were magnetite (Fe3O4). The particle size of the magnetite nanoparticles was about 6 nm confirmed by transmission electron microscopy image. The particle shape was almost a sphere confirmed by scanning electron microscopy image. The coercivity and saturation magnetization of the as-synthesized iron oxide nanopowders were 114 Oe, and 3.7 emu/g, respectively.  相似文献   

17.
In the cosmetic and pharmaceutical industries, it has been increasingly popular to use alternative solvents in the extraction of bioactive compounds from plants. Coffee pulp, a by-product of coffee production, contains different phenolic compounds with antioxidant properties. The effects of polyols, amplitude, extraction time, solvent concentration, and liquid–solid ratio on total phenolic content (TPC) using ultrasound-assisted extraction (UAE) were examined by single-factor studies. Three main factors that impact TPC were selected to optimize the extraction conditions for total phenolic content (TPC), total flavonoid content (TFC), total tannin content (TTC), and their antioxidant activities using the Box-Behnken design. Different extraction methods were compared, the bioactive compounds were identified and quantified by liquid chromatography triple quadrupole mass spectrometer (LC-QQQ), and the cytotoxicity and cellular antioxidant activities of the extract were studied. According to the response model, the optimal conditions for the extraction of antioxidants from coffee pulp were as follows: extraction time of 7.65 min, liquid–solid ratio of 22.22 mL/g, and solvent concentration of 46.71 %. Under optimized conditions, the values of TPC, TFC, TTC, 1,1-diphenyl-2-picryl-hydrazil (DPPH) radical scavenging assay, 2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid (ABTS) radical scavenging assay, and Ferric reducing antioxidant power assay (FRAP) were 9.29 ± 0.02 mg GAE/g sample, 58.82 ± 1.38 mg QE/g sample, 8.69 ± 0.25 mg TAE/g sample, 7.56 ± 0.27 mg TEAC/g sample, 13.59 ± 0.25 mg TEAC/g sample, and 10.90 ± 0.24 mg FeSO4/g sample, respectively. Compared with other extraction conditions, UAE with propylene glycol extract (PG-UAE) was significantly higher in TPC, TFC, TTC, DPPH, ABTS, and FRAP response values than UAE with ethanol (EtOH-UAE), maceration with propylene glycol (PG-maceration), and maceration with ethanol (EtOH -maceration) (p < 0.05). Major bioactive compounds detected by LC-QQQ included chlorogenic acid, caffeine, and trigonelline. At higher concentrations starting from 5 mg/ml, PG-UAE extract showed higher cell viability than EtOH-UAE in both cytotoxicity and cellular antioxidant assays. The researcher expects that this new extraction technique developed in this work could produce a higher yield of bioactive compounds with higher biological activity. Therefore, they can be used as active ingredients in cosmetics (anti-aging products) and pharmaceutical applications (food supplements, treatment for oxidative stress-related diseases) with minimal use of chemicals and energy.  相似文献   

18.
The prime objective of the present experimental work is to evaluate the impact of ultrasonication time and surfactants on the optical characteristics (transmittance and absorbance) and stability of CuO/water, CNTs/water, and Fe3O4/water nanofluids to be used in spectrum selective applications. Two-step method with various ultrasonication times (30 min, 60 min, and 90 min) was employed to prepare nanofluids (having volume fractions of 0.004 % and 0.0004 %). Furthermore, various surfactants (anionic, cationic, and polymer) were added to the base fluid. The study results revealed that surfactants have a significant effect on the stability of nanofluids over ultrasonication time. The nanofluids prepared using sodium dodecylbenzene sulfonate (SDBS) have the highest zeta potential values than other surfactants used in the experimentation. The increase in transmittance of nanofluid was more prominent for lower concentration (0.0004 %) after one week of preparation. The concentration of nanoparticles, ultrasonication time, temperature, and surfactants influenced the optical characteristics of nanofluids. The most stabled CNTs nanofluid with 0.004 % concentration and 90 min of ultrasonication obtained an average of 67.6 % and 74.6 % higher absorbance than stabled CuO and Fe3O4 nanofluids, respectively. The irradiance transmitted through nanofluid was strongly dependent on the concentration and type of nanoparticles.  相似文献   

19.
The use of starch based nanoparticles have gained momentum in stabilizing pickering emulsions for it’s numerous advantages. In present study resistant starch (RS) was isolated from lotus stem using enzymatic digestion and subjected to nanoprecipitation and ultrasonication to yield resistant starch nanoparticles (RSN). RSN of varying concentrations (2%, 10% and 20%) were used to stabilize the flax seed-oil water mixture to form pickering emulsions. The emulsions were used to nanoencapsulate ferulic acid (FA) – a well known bioactive via ultrasonication. The emulsions were lyophilized to form FA loaded lyophilized pickering emulsion (FA-LPE). The FA-LPE (2%, 10 % and 20%) were characterized using dynamic light scattering (DLS), light microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM) and attenuated total reflectance fourier transform infra-spectroscopy (ATR-FTIR). AFM showed FA-LPE as spherical droplets embedded in the matrix with maximum peak height of 8.47 nm and maximum pit height of 1.69 nm. SEM presented FA-LPE as an irregular and continuous surface having multiple folds and holes. The ATR-FTIR spectra of all the samples displayed peaks of C = C aromatic rings of FA at 1600 cm−1 and 1439 cm−1, signifying successful encapsulation. In vitro release assay displayed more controlled release of FA from FA-LPE (20%). Bioactivity of FA-LPE was evaluated in terms of anti-cancer, anti-diabetic, angiotensin converting enzyme (ACE) inhibition and prevention against oxidative damage under simulated gastro-intestinal conditions (SGID). The bioactivity of FA-LPE (20%) was significantly higher than FA-LPE (2%) and FA-LPE (10%). Key findings reveal that pickering emulsions can prevent FA under harsh SGID conditions and provide an approach to facilitate the design of pickering emulsions with high stability for nutraceutical delivery in food and supplement products.  相似文献   

20.
This research includes production of chitosan nanocapsules through ionic gelation with sodium bisulfate for nanoencapsulation of hydroxytyrosol (HT) using ultrasonication in tandem. The resulting nanocapsules encapsulating HT were analyzed for particle size, ζ-potential, packaging characteristics, FESEM, ATR-FTIR, XRD, DSC, in vitro release, antioxidant potential and antiproliferative properties. The nanocapsules (size 119.50–365.21 nm) were spherical to irregular shaped with positive ζ-potential (17.50–18.09 mV). The encapsulation efficiency of 5 mg/g HT (HTS1) and 20 mg/g HT (HTS2) was 77.13% and 56.30%, respectively. The nanocapsules were amorphous in nature with 12.34% to 15.48% crystallinity and crystallite size between 20 nm and 27 nm. Formation of nanocapsules resulted in increasing the glass transition temperature. HTS2 delivered 67.12% HT (HTS1 58.89%) at the end of the simulated gastrointestinal digestion. The nanoencapsulated HT showed higher antioxidant and antiproliferative (against A549 and MDA-MB-231 cancer cell lines) properties than the free HT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号