首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Titanium has been widely used as biomaterial for various medical applications because of its mechanical strength and inertness. This on the other hand makes it difficult to structure it. Nanostructuring can improve its performance for advanced applications such as implantation and lab-on-chip systems. In this study we show that a titania nanofoam on titanium can be formed under high intensity ultrasound (HIUS) treatment in alkaline solution. The physicochemical properties and morphology of the titania nanofoam are investigated in order to find optimal preparation conditions for producing surfaces with high wettability for cell culture studies and drug delivery applications. AFM and contact angle measurements reveal, that surface roughness and wettability of the surfaces depend nonmonotonously on ultrasound intensity and duration of treatment, indicating a competition between HIUS induced roughening and smoothening mechanisms. We finally demonstrate that superhydrophilic bio-and cytocompatible surfaces can be fabricated with short time ultrasonic treatment.  相似文献   

2.
Ultrasonic-assisted metal droplet deposition (UAMDD) is currently considered a promising technology in droplet-based 3D printing due to its capability to change the wetting and spreading behaviors at the droplet-substrate interface. However, the involved contact dynamics during impacting droplet deposition, particularly the complex physical interaction and metallurgical reaction of induced wetting-spreading-solidification by the external energy, remain unclear to date, which hinders the quantitative prediction and regulation of the microstructures and bonding property of the UAMDD bumps. Here, the wettability of the impacting metal droplet ejected by a piezoelectric micro-jet device (PMJD) on non-wetting and wetting ultrasonic vibration substrates is studied, and the corresponding spreading diameter, contact angle, and bonding strength are also discussed. For the non-wetting substrate, the wettability of the droplet can be significantly increased due to the extrusion of the vibration substrate and the momentum transfer layer at the droplet-substrate interface. And the wettability of the droplet on a wetting substrate is increased at a lower vibration amplitude, which is driven by the momentum transfer layer and the capillary waves at the liquid–vapor interface. Moreover, the effects of the ultrasonic amplitude on the droplet spreading are studied under the resonant frequency of 18.2–18.4 kHz. Compared to deposit droplets on a static substrate, such UAMDD has 31% and 2.1% increments in the spreading diameters for the non-wetting and wetting systems, and the corresponding adhesion tangential forces are increased by 3.85 and 5.59 times.  相似文献   

3.
设计了一种大负载超声振动磨削系统,超声系统由换能器、圆柱圆锥形变幅杆和轮辐式砂轮组成.首先将轮辐式砂轮等效成轮毂为圆柱杆、辐板与轮缘为中厚板的复合模型,利用各接触面边界连续的条件推导系统的频率方程,完成了超声磨削系统的设计,制作了实验装置并分析验证了其声学振动特性.实验结果表明:利用轮辐式砂轮复合模型求解系统频率方程,...  相似文献   

4.
Under the action of acoustic waves during an ultrasonic-assisted tungsten inert gas (TIG) welding process, a grain of a TIG weld of aluminum alloy is refined by nucleation and grain fragmentation. Herein, effects of ultrasound on grain fragmentation in the TIG weld of aluminum alloy are investigated via systematic welding experiments of pure aluminum. First, experiments involving continuous and fixed-position welding are performed, which demonstrate that ultrasound can break the grain of the TIG weld of pure aluminum. The microstructural characteristics of an ultrasonic-assisted TIG weld fabricated by fixed-position welding are analyzed. The microstructure is found to transform from plane crystal, columnar crystal, and uniform equiaxed crystal into plane crystal, deformed columnar crystal, and nonuniform equiaxed crystal after application of ultrasound. Second, factors influencing ultrasonic grain fragmentation are investigated. The ultrasonic amplitude and welding current are found to have a considerable effect on grain fragmentation. The degree of fragmentation first increases and then decreases with an increase in ultrasonic amplitude, and it increases with an increase in welding current. Measurement results of the vibration of the weld pool show that the degree of grain fragmentation is related to the intensity of acoustic nonlinearity in the weld pool. The greater the intensity of acoustic nonlinearity, the greater is the degree of grain fragmentation. Finally, the mechanism of ultrasonic grain fragmentation in the TIG weld of pure aluminum is discussed. A finite element simulation is used to simulate the acoustic pressure and flow in the weld pool. The acoustic pressure in the weld pool exceeds the cavitation threshold, and cavitation bubbles are generated. The flow velocity in the weld pool does not change noticeably after application of ultrasound. It is concluded that the high-pressure conditions induced during the occurrence of cavitation, lead to grain fragmentation in a pure aluminum TIG weld during an ultrasonic-assisted TIG welding process.  相似文献   

5.
Most of the factors limiting the extensive application of laser-based ultrasonic for nondestructive evaluation of surface breaking crack are its poor sensitivity, low efficiency relative to conventional contact ultrasonic methods and limit on the dimension of the cracks. For this reason, a new technique that multiplepulse narrow-band ultrasound generated by laser arrays has been proposed. It is found that crack detection dependent on spectrum of narrow-band ultrasound generated by laser arrays can be operated with low amplitude requirements. In this paper, the narrow-band ultrasound generated by pulse laser arrays interacting with surface breaking cracks has been simulated in detail by the finite element method (FEM) according to the thermoelastic theory. The pulsed array lasers were assumed to be transient heat source, and the surface acoustic wave (SAW) which propagating on the top of the plate was computed based on thermoelastic theory. Then the frequency spectrums of both reflected waves by crack and transmission ones through crack were compared with the direct waves. Results demonstrate that multiple-frequency components of the narrow-band ultrasound were varied with change of the depth of surface breaking cracks significantly, which provides the possibility for precise evaluation of surface breaking cracks.  相似文献   

6.
郑莉  郭建中 《物理学报》2016,65(4):44305-044305
提出了一种由径向振动模式的圆环形压电换能器晶片组成的圆柱形阵列换能器结构, 依据阵元激励信号的相位调控机理, 推导了圆环形聚焦声场的调控公式, 在三维空间中构建了圆环形聚焦声场, 实现了对其聚焦区域大小、聚焦圆环半径以及轴向位置移动的调控. 理论分析和仿真研究表明, 所提出的圆柱形阵列换能器实现了对圆环形聚焦声场的调控. 为检测超声、功率超声、医学超声等应用领域提供了一种可实现的新型圆环形可调控聚焦声场.  相似文献   

7.
The sonoprocessing of droplet spreading during the wetting process of molten aluminum droplets on SiC ceramic substrates at 700 °C is investigated in this paper. When wetting is assisted by a 20 kHz frequency ultrasonic field, the wettability of liquid metal gets enhanced, which has been determined by the variations in thermodynamic energy and wetting kinetics. Wetting kinetic characteristics are divided into two stages according to pinning and depinning states of substrate/droplet contact lines. The droplet is static when the contact line is pinning, while it is forced to move when the contact line is depinning. When analyzing the pinning stage, high-speed photography reveals the evidence of oxide films being rapidly crushed outside the aluminum droplet. In this work, atomic models of spherical Al core being wrapped by alumina shell are tentatively built, whose dioxide microstructures are being transformed from face-centered cubic into liquid at the atomic scale. At the same time, the wetting experiment reveals that the oxide films show changes in the period of sonoprocessing from 3rd to 5th second.During the ultrasonic spreading behavior in the late stage, there is a trend of evident expansion of the base contact area. The entire ultrasonic process lasts for no longer than 10 s. With the aid of ultrasonic sinusoidal waves, the wettability of metal Al gets a rapid improvement. Both molecular dynamic (MD) investigations and the experiments results reveal that the precursor film phenomenon is never found unless wetting is assisted by ultrasonic treatments. However, the precursor film appears near the triple line after using ultrasonics in the droplet wetting process, whose formation is driven by ultrasonic oscillations. Due to the precursor film, the ultrasonic wetting contact angle is lower than the non-ultrasonic contact angle. In addition, the time-variant effective ultrasonic energy has been quantitatively evaluated. The numerical expressions of thermodynamic variables are well verified by former ultrasonic spreading test results, which altogether provide an intrinsic explanation of the fast-decreasing contact angle of Al/SiC.  相似文献   

8.
基于高分辨的CT数据建立了非均匀颅骨仿真模型,该模型引入了颅骨的声衰减系数,深入研究和分析了声波时间反转法和超声相控阵法在颅脑中的聚焦方法及效果。颅骨具有较强的声波衰减特性,使用时间反转聚焦时需要进行幅度补偿,对于0.7MHz的频率信号,幅度补偿后的时间反转聚焦声场主瓣宽度窄、旁瓣低,焦点处声场比无幅度补偿的时间反转法提高8.86dB,比超声相控阵聚焦法提高7.89dB,具有很好的空间聚焦精度和聚焦效率。研究了颅骨衰减系数、声场焦点位置、声波频率、换能器阵列位置和方位等参数对聚焦声场的影响,结果表明,幅度补偿时间反转法比相控阵法具有更低的旁瓣,且高频时的聚焦效果比相控阵好,相控阵聚焦对换能器阵列的位置和方位比较敏感,而时间反转经颅超声聚焦对声传播路径和入射角具有更高的鲁棒性。   相似文献   

9.
In dynamic force microscopy the cantilever of an atomic force microscope is vibrated at ultrasonic frequencies in the range of several 10 kHz up to several MHz while scanning a sample surface. The amplitude and phase of the cantilever vibration as well as the shift of the cantilever resonance frequencies provide information about local sample surface properties. In several operation modes of dynamic force microscopy, for example force modulation microscopy, tapping mode or atomic force acoustic microscopy, the sensor tip is in contact with the sample at least during a fraction of its vibration cycle. The periodic indentation of the tip with the sample surface generates ultrasonic waves. In this paper, the ultrasonic radiation of a vibrating cantilever into a sample and its contribution to the damping of the cantilever vibration are calculated. The theoretical results are compared to experiments.  相似文献   

10.
应用激光蚀刻不同微织构表面的润湿性   总被引:1,自引:0,他引:1       下载免费PDF全文
熊其玉  董磊  焦云龙  刘小君  刘焜 《物理学报》2015,64(20):206101-206101
运用激光微织构技术, 通过控制微凹坑形状、间距、深度等参数, 在45#钢表面制备了一组表面算术平均偏差Sa相同但表面微观结构不同的试件. 使用Talysulf CCI Lite 非接触式三维光学轮廓仪对表面进行测量, 采用ISO 25178三维形貌表征参数对其形貌进行表征. 在SL200 KS光学法固液接触角和界面张力仪上针对32#汽轮机油进行润湿性试验, 分析了温度、液滴体积、表面结构特征等因素对润湿性的影响, 并借助ISO25178中部分参数对固体表面形貌随机特征与其润湿性之间的关联性进行了量化研究. 基于固液本征接触角为锐角, 研究结果表明: 固液接触角在润湿过程中先迅速减小, 之后逐渐趋于稳定; 固液平衡接触角随温度的升高而减小, 随液滴体积的增大先增大后减小; 激光微织构能够改变表面润湿性, Sa相同的表面, 微织构形状、方向均影响表面润湿性, 当槽状微织构表面的槽方向与液滴铺展方向一致时, 润湿效果最优. ISO25178系列三维形貌表征参数中幅度参数(Sku, Ssk)、空间参数(Str, Sal)、混合参数(Sdq, Sdr)与表面润湿性之间具有较强的关联性: Sku, Sal, Sdr越大, Ssk, Str, Sdq 越小的表面, 固液平衡接触角越小, 表面润湿性越好.  相似文献   

11.
刘邱祖  寇子明  贾月梅  吴娟  韩振南  张倩倩 《物理学报》2014,63(10):104701-104701
基于疏水固壁改性会引起润湿性反转的特点,采用考虑固体与液体间分子力的格子Boltzmann方法,从壁面的线性和瞬时改性两方面对润湿性反转现象进行了数值模拟,并结合流体体积方法处理界面层质量.结果表明:壁面线性改性的过程中润湿性反转变化平稳,润湿所需时间大幅减少,所得到的接触角与固液吸引力系数的关系与其他文献结果一致;壁面瞬时改性幅度越大说明固壁对液滴作用力越强,表现为润湿性变化越明显,瞬时改性后接触角随时间呈指数规律变化,这与现有结论相符合.研究发现:在改性条件下液膜铺展过程中伴随着振荡变化,线性改性的振动峰值与改性幅度相关;瞬时改性的液膜速度会在某一时刻突然增大,这种现象与夹带空气有关.  相似文献   

12.
波导杆技术是一种有效的超声辅助检测方法,在提升高温关键承压设备安全运行方面具有重要作用。现有的波导换能器因直入式发射声波,常被用来在线监测壁厚的腐蚀进程,难以对指定方向的缺陷进行有效检测。为了解决这个难题,基于斯涅耳定理以及导波的频散特性提出了一种弯折结构的波导杆来实现超声斜入射。首先分析了弯折波导杆中水平剪切波的传播特性,探究了波导杆的厚度、弯折角度对杆中声波传播的影响规律;然后,进一步研究了弯折波导杆在半无限空间内的声束指向性;最后通过一对弯折波导杆在线检测结构内部缺陷的试验证明了波导超声斜入射的应用价值。研究结果为基于斜入射技术的波导超声在线监测提供了坚实的理论基础。  相似文献   

13.
Ultrasound contrast agents consist of microscopically small bubbles encapsulated by an elastic shell. These microbubbles oscillate upon ultrasound insonification, and demonstrate highly nonlinear behavior, ameliorating their detectability. (Potential) medical applications involving the ultrasonic disruption of contrast agent microbubble shells include release-burst imaging, localized drug delivery, and noninvasive blood pressure measurement. To develop and enhance these techniques, predicting the cracking behavior of ultrasound-insonified encapsulated microbubbles has been of importance. In this paper, we explore microbubble behavior in an ultrasound field, with special attention to the influence of the bubble shell. A bubble in a sound field can be considered a forced damped harmonic oscillator. For encapsulated microbubbles, the presence of a shell has to be taken into account. In models, an extra damping parameter and a shell stiffness parameter have been included, assuming that Hooke's Law holds for the bubble shell. At high acoustic amplitudes, disruptive phenomena have been observed, such as microbubble fragmentation and ultrasonic cracking. We analyzed the occurrence of ultrasound contrast agent fragmentation, by simulating the oscillating behavior of encapsulated microbubbles with various sizes in a harmonic acoustic field. Fragmentation occurs exclusively during the collapse phase and occurs if the kinetic energy of the collapsing microbubble is greater than the instantaneous bubble surface energy, provided that surface instabilities have grown big enough to allow for break-up. From our simulations it follows that the Blake critical radius is not a good approximation for a fragmentation threshold. We demonstrated how the phase angle differences between a damped radially oscillating bubble and an incident sound field depend on shell parameters.  相似文献   

14.
赵瑞  梁忠诚 《中国物理 B》2016,25(6):66801-066801
Electrowetting, as a well-known approach to increasing droplet wettability on a solid surface by electrical bias, has broad applications. However, it is limited by contact angle saturation at large voltage. Although several debated hypotheses have been proposed to describe it, the physical origin of contact angle saturation still remains obscure. In this work, the physical factors responsible for the onset of contact angle saturation are explored, and the correlated theoretical models are established to characterize electrowetting behavior. Combination of the proper 3-phase system employed succeeds in dropping the saturating contact angle below 25°, and validates that the contact angle saturation is not a result of device-related imperfection.  相似文献   

15.
Haake A  Dual J 《Ultrasonics》2004,42(1-9):75-80
A method for the controlled positioning of small particles in one or two dimensions by an ultrasound field excited by a surface wave is presented. Particles of a diameter between 10 and 100 microm placed on a surface can be concentrated at certain locations and moved over the surface. In other approaches it is possible to let the particle levitate freely in the fluid. However for the use of ultrasonic positioning in for example microassembling it is necessary to move particles over a surface as well as to let them levitate over the surface. Physical principle: A two- or three-dimensional ultrasound field is excited in a fluid filled gap between a rigid surface at the bottom and a vibrating surface of a solid at the top. The height of the gap varies between 0.1 and 2 mm. A one-dimensional sinusoidal vibration of the upper surface excites a two-dimensional ultrasound field in the fluid. Particles that are arbitrarily distributed on the lower surface will be concentrated in lines by the ultrasound field. First the calculation of the field of forces on particles in the fluid layer is presented. Then the dispersion relation of a vibrating plate which is in contact with a fluid on one side is derived. The technical setup will be introduced. Finally the experiments are shown and compared to the theoretical results.  相似文献   

16.
超声复合电弧声调控特性研究   总被引:3,自引:2,他引:1       下载免费PDF全文
谢伟峰  范成磊  杨春利  林三宝  张玉岐 《物理学报》2015,64(9):95201-095201
超声复合电弧作为一种新的焊接热源, 在电弧焊接过程中可利用超声实现对熔融金属的深度处理, 但是超声与电弧等离子体间相互作用机理还不清晰, 这成为阻碍该技术工程应用的关键问题. 本文通过实验与相应理论针对外加超声场对焊接电弧调控特性进行了研究. 为说明电弧特性, 针对试验中高速摄像采集的电弧图片进行了处理. 对比未加超声情况, 超声复合电弧受内外声场共同作用等离子体拘束程度明显提高, 电弧亮度增强, 弧柱高温区范围扩展至阳极, 中间粒子出现团聚并以一定频率上下抖动. 通过改变超声激励电流大小和声发射端高度, 电弧结构产生显著变化, 在谐振点附近, 电弧挺直度最强, 脉动频率最大. 试验结果显示通过外加超声可以达到对焊接电弧热等离子体调控的目的. 最后结合波动方程和二维声边界元模型, 分析了电弧内部声传播过程以及声场结构对等离子体粒子的作用规律, 这为进一步理解超声对电弧的调控机理打下良好基础.  相似文献   

17.
带凹槽的微通道中液滴运动数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张明焜  陈硕  尚智 《物理学报》2012,61(3):34701-034701
运用改进的耗散粒子动力学方法模拟了液滴在由凹槽所构成的粗糙表面微通道内的运动行为.改进的耗散粒子动力学方法采用新近提出的一种短程排斥、长程吸引相互作用势能函数,从而可以模拟带有自由面的流体,如液滴等.模拟了新势能函数下液滴与固体壁面的静态接触角,并用2次多项式拟合了"接触角-awf/af"变化曲线.研究了液滴在带凹槽的微通道中运动时,微通道壁面浸润性、外场力、液滴温度对液滴流动特性的影响.研究表明壁面浸润性和外场力对液滴流动特性的影响较大,液滴温度对液滴流动特性的影响较小.研究结果对运用耗散粒子动力学方法模拟并分析微流体在复杂微通道的流动有一定的参考价值.  相似文献   

18.
赵甜甜  林书玉  段祎林 《物理学报》2018,67(22):224207-224207
利用声子晶体的带隙理论以及耦合振动理论对大尺寸矩形超声塑料焊接工具的耦合振动进行了研究.在实际工程应用中,大尺寸工具的横向振动将严重导致工具头辐射面位移不均匀,影响系统的焊接质量及工作效率.为提高其工作效率,改善工具头辐射面位移的均匀程度,利用类声子晶体结构对大尺寸超声塑料焊接工具的横向振动进行抑制,分析并得出了类声子晶体结构的横向振动带隙,同时分析了工具头横向振动未抑制与抑制后其辐射面位移的大小与均匀程度.研究表明,通过合理设计类声子晶体的结构及尺寸,可以有效抑制超声塑料焊接工具的横向振动.不但改善了焊接工具辐射面纵向振动位移的均匀程度,而且提高了焊接工具的纵向振动位移幅度.  相似文献   

19.
To explore a more convenient method for measuring the focused ultrasound power,a piezoelectric ceramic plate was used to receive ultrasonic signal directly.Due to an acoustic force acts on the surface of piezoelectric ceramic plate,the piezoelectric response was obtained by means of electromechanical analogy,which was composed of voltage response caused by forced vibration and high frequency attenuation response caused by natural vibration.The conversion relationship between output signal of piezoelectric ceramic plate and acoustic power of transducer was analyzed.The envelope of output piezoelectric signal was extracted in twice,and a voltage amplitude curve with sinusoidal distribution that could describe the changes of acoustic power was obtained.Under different drive voltage of transducer,the maximum peak voltage of envelope curve was found respectively.Their squared values were made a linear fitting with acoustic power measured by acoustic power meter,and then the proportional coefficient of theoretical relational expression was calibrated.The experimental results are in good agreement with the theory.The relative error between calibrated theoretical acoustic power and that measured by acoustic power meter was less than 8.7%.The paper can provide a guideline for measuring acoustic power of transducer by using piezoelectric signal.  相似文献   

20.
As a newly developed arc welding method, power ultrasound has been successfully introduced into arc and weld pool during ultrasonic wave-assisted arc welding process. The advanced process for molten metals can be realized by utilizing additional ultrasonic field. Under the action of the acoustic wave, the plasma arc as weld heat source is regulated and its characteristics make an obvious change. Compared with the conventional arc, the ultrasonic wave-assisted arc plasma is bound significantly and becomes brighter. To reveal the dependence of the acoustic binding force on acoustic field parameters, a two-dimensional acoustic field model for ultrasonic wave-assisted arc welding device is established. The influences of the radiator height, the central pore radius, the radiator radius, and curvature radius or depth of concave radiator surface are discussed using the boundary element method. Then the authors analyze the resonant mode by this relationship curve between acoustic radiation power and radiator height. Furthermore, the best acoustic binding ability is obtained by optimizing the geometric parameters of acoustic radiator. In addition, three concave radiator surfaces including spherical cap surface, paraboloid of revolution, and rotating single curved surface are investigated systematically. Finally, both the calculation and experiment suggest that, to obtain the best acoustic binding ability, the ultrasonic wave-assisted arc welding setup should be operated under the first resonant mode using a radiator with a spherical cap surface, a small central pore, a large section radius and an appropriate curvature radius.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号