首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Water and ion transport in thin sheets of initially dry, ionic, hydrophilic crosslinked polymers was modelled throughout the dynamic swelling process. The water transport was expressed in terms of a non-Fickian equation with a diffusion term containing a Fujitatype concentration-dependent diffusion coefficient coupled with a pseudoconvective term arising from the reasonable assumption that the stress in ionic polymers is proportional to the total number of ionized pendant groups in the polymer. Ion transport was expressed in terms of generalized Fickian equations with water concentration-dependent diffusion coefficients. These equations were solved with appropriate boundary conditions to establish the water uptake as a function of time, pH and ionic strength in a citrate-phosphate-borate buffer solution. A new dimensionless number, the Stress Swelling number, A, was defined to quantify the relative importance of stress in the overall swelling process. Water uptake was a strong function of A. © 1994 John Wiley & Sons, Inc.  相似文献   

2.
Diffusive transport within complex environments is a critical piece of the chemistry occurring in such diverse membrane systems as proton exchange and bilayer lipid membranes. In the present study, fluorescence correlation spectroscopy was used to evaluate diffusive charge transport within a strong polyelectrolyte polymer brush. The fluorescent cation rhodamine-6G was used as a counterion probe molecule, and the strong polyelectrolyte poly(styrene sulfonate) was the polymer brush. Such strong polyelectrolyte brushes show promise for charge storage applications, and thus it is important to understand and tune their transport efficiencies. The polymer brush demonstrated preferential solvation of the probe counterion as compared to solvation by the aqueous solvent phase. Additionally, diffusion within the polymer brush was strongly inhibited, as evidenced by a decrease in diffusion constant of 4 orders of magnitude. It also proved possible to tune the transport characteristics by controlling the solvent pH, and thus the ionic strength of the solvent. The diffusion characteristics within the charged brush system depend on the brush density as well as the effective interaction potential between the probe ions and the brush. In response to changes in ionic strength of the solution, it was found that these two properties act in opposition to each other within this strong polyelectrolyte polymer brush environment. A stochastic random walk model was developed to simulate interaction of a diffusing charged particle with a periodic potential, to show the response of characteristic diffusion times to electrostatic field strengths. The combined results of the experiments and simulations demonstrate that responsive diffusion characteristics in this brush system are dominated by changes in Coulombic interactions rather than changes in brush density. More generally, these results support the use of FCS to evaluate local charge transport properties within polyelectrolyte brush systems, and demonstrate that the technique shows promise in the development of novel polyelectrolyte films for charge storage/transport materials.  相似文献   

3.
High proton conductivity in hydrophobic backbone‐based polymers such as Nafion is known to be due to the formation of organized ionic clusters and channels upon hydration. However, a lower proton conductivity in hydrophilic, ionic polymers and the role played by the microstructure are not well understood. In this work, we demonstrate the importance of heterogeneity in crosslinked ionic polymer networks in explaining proton conductivity. Poly(vinyl alcohol) (PVA) crosslinked with sulfosuccinic acid (SSA) is used as the model polymer system for the study. Evolution of the microstructure with hydration and the effect on proton conductivity are analyzed using ATR‐FTIR spectroscopy, dielectric spectroscopy, and small‐angle neutron scattering. We show that the presence of the two hydrophilic groups in PVA‐SSA (hydroxyl and sulfonic acid), as opposed to Nafion, results in competition for water and a lower proton conductivity. The crosslinked polymer–water system contains heterogeneous domains of crosslink nodes which are conductive. These domains (of size 20–35 Å) interconnect with each other and form tortuous percolating domains through which proton conduction takes place. The presence of hydroxyl groups results in some of the domains being ineffective for proton transport, resulting in a lower conductivity. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1087–1101  相似文献   

4.
聚合物的微观结构是设计具有优异的电化学性能的聚合物电解质膜(PEMs)的基础.在电解质膜中,相分离结构形成的离子簇和离子通道可以影响膜在高温低湿度条件下的离子传导和水的传输,这种结构形成的形貌也可以影响膜的吸水率、溶胀度、碱稳定性等性能.近几年来,人们对于具有微观相分离形貌的PEMs的合成和形貌开展了很多研究.本文主要...  相似文献   

5.
Sorption and transport properties of water through films of Nylon-6 were obtained at 5, 23, and 40°C. Commercially available films were used and a Cahn electrobalance was employed for measuring the water uptake by the polymer samples. Values of the water sorption isotherms are accurately described by the Langmuir/Flory-Huggins dual-mode sorption model. At water activity values below 0.15, the volume fraction of water described by the Langmuir portion of the model was greater than the Flory-Huggins population. Solubility and diffusion coefficients of water, as well as the diffusion activation energy and enthalpy of dissolution of water for Nylon-6, were determined from the sorption experiments. Values obtained support the hypothesis of a bimodal water sorption mode, and the formation of water clusters. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
A model of concentration transition “ions and complexes in a water structure → ionic and ionicaqueous clusters → polymer structures of salt and crystal hydrate melts” is suggested. The appearance of cluster nanostructures outside the first zone of a waterlike structure is regarded as a general characteristic of solutions. The characteristics of solutions, phase equilibria, and salts of complex composition are interpreted based on this model. Investigation of the complex dielectric constant of electrolytic solutions in the SHF and EHF bands (7–119 GHz) at high concentrations showed that there are two dispersion regions in which the relaxation times differ by a factor of 5–10. Relaxation processes are separated, the numbers of molecules in hydration shells are calculated, and relaxation times are determined for bulky tetrahedral water with hydration shells of ions, for clusters, and for ionicaqueous polymer chains. It is shown that the two structure subsystems of water molecules in concentrated solutions may be described using the limited rotator/generalized diffusion molecular model. Translated fromZhumal Strukturnoi Khimii, Vol. 39, No. 5, pp. 851–863, September–October, 1998.  相似文献   

7.
Small angle X-ray scattering (SAXS) and nuclear magnetic resonance (NMR) investigations of recast composite and bare Nafion membranes have been carried out. The self-diffusion coefficients of water and methanol have been determined over a wide temperature range by PFGSE 1H NMR method. The transport mechanism appears to be influenced by surface properties of inorganic fillers. Acidic silica filler appears to promote proton transport in the membrane with respect to basic alumina. An interaction of the silica surface with methanol molecules is also envisaged from the analysis of proton self diffusion coefficients of methanol. The SAXS analysis revealed a modification of the polymer structure immersed in pure methanol or methanol solution with respect to water. A significant increase of the average ion clusters dimension is observed for the composite SiO2 membrane.  相似文献   

8.
The effect of presence of water on the transport of oxygen through films of Nylon-6 was evaluated at 5, 23, and 40°C by permeation experiments. Through the oxygen permeability experiments it was found that the diffusion of oxygen through Nylon-6 is not a simple Fickian process and the total diffusion process can be expressed by a bimodal diffusion mechanism. Permeability, solubility, and diffusion coefficients were determined as a function of water activity for both mechanisms. The effect of sorbed water on the oxygen diffusion and solubility in the polymer is presented as a function of the state of water in the polymer and as a result of the molecular competition between water and oxygen. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
In this work, we present a novel method for in situ investigation of surface charging and ion transport inside nanopores of titania‐silica waveguide by means of the optical‐waveguide‐lightmode spectroscopy. Porous oxide waveguides show a strong optical response when exposed to electrolyte solutions, and this response is consistent with oxide surface charging due to changes in ionic strength and pH of the solution in contact with the waveguide. The optical response to pH or electrolyte concentration change is stabilized within several minutes when the solution ionic strength is sufficiently high (0.1M ), while it takes two orders of magnitude longer to reach stable optical response at very low ionic strengths (<0.1mM ). The relaxation times at the high ionic strength are still by several orders of magnitude slower than expected from bulk diffusion coefficients of electrolytes in water. Our results indicate that diffusion of electrolytes is severely hindered (and more so with decreasing ionic strength) in charged pores inside waveguides.  相似文献   

10.
Water sorption and transport properties for a series of polysulfones are presented and interpreted in terms of the changes in the structure of the repeat unit compared to that of bisphenol A polysulfone. The differences between the sorption and diffusion of water and of permanent gases in these materials are also discussed. Water has the ability to interact with the polymer and with itself through hydrogen bonding in a way that permanent gases cannot. The equilibrium solubility of water in the polymer, unlike permanent gases, does not have a simple dependence on free volume but correlates more strongly with the frequency of hydrogen bonding sites on the polymer. Analysis of the sorption isotherms using the method of Zimm and Lundberg suggests that water molecules cluster in these polysulfones to various extents. For each polysulfone except polyethersulfone, the water diffusion coefficient decreases with increasing activity, which also suggests water clustering. For most of these materials, the water diffusion coefficient is larger than that of bisphenol A polysulfone and is directly related to the polymer free volume. Water permeability in these materials broadly correlates with the polymer free volume, but a favorable water-polymer interaction can be an overriding factor. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Precise control of ion transport is a fundamental characteristic for the sustainability of life. It remains a great challenge to develop practical and high‐performance artificial ion‐transport system that can allow active transport of ions (protons) in an all solid‐state nanoporous material. Herein, we develop a Janus microporous membrane by combining reduced graphene oxide (rGO) and conjugated microporous polymer (CMP) for controllable photodriven ion transport. Upon light illumination, a net ionic current is generated from the CMP to the rGO side of the membrane, indicating that the rGO/CMP Janus membrane can realize photodriven directional and anti‐gradient ion transport. Analogously to the p‐n junction in photovoltaic devices, light is firstly converted into separated charges to trigger a transmembrane potential, which subsequently drives directional ion movement. For the first time, this method enables integration of a photovoltaic effect with an ionic field to drive active ion transport. With the advantages of scaled up production and easy fabrication, the concept of photovoltaic ion transport based on Janus microporous membrane may find wide application in energy storage and conversion, photodriven ion‐sieving, and water treatment.  相似文献   

12.
The electrochemical properties of a perfluorosulfonic acid (PFSA) membrane are estimated using a combination of molecular dynamics simulation and statistical thermodynamic model. We obtain all parameters in an ionic conductivity model from an atomistic simulation and remove all adjusted model parameters. From a microscopic point of view, the hydrated PFSA membrane shows micro‐phase segregation which separated into hydrophilic and hydrophobic phases. Our present work originates with this phenomenon and we treat this phase segregation as if it is a continuous phase for each of which the proton (H+) is transported inside the PFSA membrane/solvent (water and alcohols) mixture. The chemical potential for a given system is estimated using a molecular simulation technique to predict the van der Waals interaction energy between the polymer and solvent. In addition, the self diffusion coefficients are calculated from the molecular dynamics simulation. We study various polymer/solvent compositions to understand the concentration dependence of self diffusion coefficient. Our self diffusion coefficients and also the predicted final ionic conductivity agree well with previously reported experimental data. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 1455–1463, 2011  相似文献   

13.
Ionic clustering, water binding, and ion conductivity were studied in polymers functionalized with sulfonic acid and quaternary ammonium hydroxide groups. Small-angle x-ray scattering showed that no clustering occurred in the quaternary ammonium containing anion exchange membranes, while evidence of ionic clusters was present in both sulfonated poly(phenylene) and in Nafion, a poly(perfluorosulfonic acid). Interestingly, the water self-diffusion coefficients of the anion exchange membranes were generally greater than those observed for the sulfonated poly- (phenylene)s, and moreover, the water self diffusion coefficients in anion exchange membranes were not a strong function of diffusion time. The water binding behavior lead to increased normalized conductivity in anion exchange membranes as compared to proton exchange membranes at the highest ion exchange capacities.  相似文献   

14.
While considering the self-diffusion processes in aqueous electrolyte solutions, transport of ions, not only by jumps of single ions, but also by jumps of their solvation shells, are to be taken into account. Samoilov estimated the relative number of the two kinds of ionic jumps from experimental data on diffusion assuming an approximately uniform value for the α factor. In the present paper entirely different theory of the α factor based on the structural hydration model of one of the authors (S.V.T.) for alkali metal ions is given and its ion-wise values are calculated at different temperatures. The theory not only dispenses with the approximate fixation of α but also throws light on the structure of water, formation of clusters and their population variation with temperature.  相似文献   

15.
The water permeability K1 [which is related to water flux J1 per unit membrane area by J1 = K1p ? ΔII)/ΔX, where Δp is the pressure difference, ΔII is the osmotic pressure of feed solution, and ΔX is the membrane thickness] of homogeneous ionic polymer membranes in reverse osmosis and their salt rejection Rs [which is given by Rs ≡ 1 ? (C2″/C2′), where C2′ is the concentration of the salt in feed solution, and C2″ is the concentration of salt in effluent] were examined with cationic and anionic membranes of block and graft copolymers. For ionic membranes, Rs and K1 are related by K1 = A exp { ? BRs}, where A and B are constants. This equation was found to be independent of the ion charge, the chemical nature of the polymer, and film morphology. The principle of salt rejection by ionic membranes was explained by the difference in the transport volumes (volume elements available for transport) for mobile co-ions and water. The electric repulsive force between a fixed ion and a mobile co-ion decreases the transport volume of the latter, thus creating a transport depletion of salt flux relative to water transport. This transport depletion is governed by the amount of water sorbed by a fixed ionic site, which also determines the water flux. Consequently, Rs and K1 for ionically charged membranes are related as described above. This relation significantly differs from that found between Rs and K1 for nonionic polymer membranes, where the size and the solubility of ions in the membrane are mainly responsible for the transport depletion. The decline of Rs with increasing K1 is much less in ionic membranes than in nonionic ones; however, in the high Rs region, K1 for both ionic and nonionic membranes become similar as the dominant mode of water transport changes from flow to diffusion.  相似文献   

16.
The measurement of sorption and diffusion behavior of liquid ethanol and water solvent mixtures in polyurethane membrane were made simultaneously by thermogravimetry. The individual amounts of sorbed water and ethanol in the polymer membrane were estimated by thermogravimetry and differentiated by mass spectrometry. In addition, from a single dynamic thermogravimetric experiment the activation energy for solvent molecules desorbing from the polymer membrane was also determined. The thermodynamic activity of ethanol vapor in equilibrium with the ethanol-water-polyurethane system was determined by gas-liquid chromatography. The clustering functions, the mean numbers of solvent molecules in the clusters, and those associating with polymer sites were evaluated by applying simplified mathematical derivatives using the experimentally determined values of activity and volume fraction of solvent molecules. It was found that at lower ethanol concentration the tendency for ethanol molecules to cluster together is high. At higher ethanol activity, ethanol-polymer site interactions predominantly occurred.

Similar results were observed for ethanol-water molecules. However, water molecules in this particular system did not exhibit a self-associating tendency nor interact with the polymer sites. It was concluded that the Zimm-Lundberg clustering theory can be adequately applied to the interpretation of sorption and diffusion behavior of liquid ethanol-water mixtures in the polymer membrane.  相似文献   

17.
Water management is one of the critical issues of polymer electrolyte membrane fuel cells because dehydration of a membrane increases membrane-resistance whereas excessive water flooding at the cathode impedes the gaseous diffusion of oxygen to reaction sites at the wetted catalyst surface. In this study, we have developed an asymmetric polymer electrolyte membrane that facilitates water management. The structural modification of the membrane strongly affected water management, due primarily to the fact that water must move through the membrane during fuel cell operation. The asymmetric membrane improved transport of water from the cathode to the anode when the hydrophilic side of the membrane located to the cathode, thereby enhancing overall fuel cell performance under both fully humidified and non-humidified conditions.  相似文献   

18.
在不同蒸气活度下,通过吸附动力学实验,测定了蒸气状态的水分子簇在聚丙烯酰胺(PAM)膜中的动态吸附曲线,改进了ENSIC模型并用于计算水分子簇在膜内的扩散系数。结果显示,随着水蒸气活度的增加,膜内水分子簇尺寸增大,并在膜的微孔内产生多层吸附甚至毛细管冷凝,导致扩散系数迅速降低。  相似文献   

19.
A review of the literature on ionic diffusion through matrices of charged particles shows that many workers have reported higher diffusivity of co-ions than of counterions. If these observations are correct then the requirement of electroneutrality of bulk solutions is violated. In those experiments other, not looked for, ions must have been taking part. It therefore appears that complete chemical analyses of solutions of both up- and downstream sides should be carried out, otherwise misleading inferences may be drawn, with practical consequences. Some researchers have studied transport of water under osmotic pressure differentials across clay membranes. However, a diffusing ion, during its transport from higher concentration to lower concentration, always carries its water of hydration. This second water transport process has not received attention. This suggests that at a critical concentration two transport processes will cancel each other. Attention has been drawn to this second type of water flow and its consequences. In ionic diffusion, each side of the membrane-outside solution interface is subject to the effects of the Nernst layer and Donnan zone. However, these layers and zones are seldom treated quantitatively. This has been carried out in this paper by two different methods. Both methods give identical thicknesses of the Nernst layer and Donnan zone. Finally, the effects of the presence of soluble bivalent salts on the diffusivity of different types of ions have been commented up on. In these cases some of the co-ions diffuse to the upstream side.  相似文献   

20.
We present an experimental study of the effect of pH, ionic strength, and concentrations of the electroosmotic flow (EOF)-suppressing polymer polyvinylpyrrolidone (PVP) on the electrophoretic mobilities of commonly used fluorescent dyes (fluorescein, Rhodamine 6G, and Alexa Fluor 488). We performed on-chip capillary zone electrophoresis experiments to directly quantify the effective electrophoretic mobility. We use Rhodamine B as a fluorescent neutral marker (to quantify EOF) and CCD detection. We also report relevant acid dissociation constants and analyte diffusivities based on our absolute estimate (as per Nernst-Einstein diffusion). We perform well-controlled experiments in a pH range of 3-11 and ionic strengths ranging from 30 to 90 mM. We account for the influence of ionic strength on the electrophoretic transport of sample analytes through the Onsager and Fuoss theory extended for finite radii ions to obtain the absolute mobility of the fluorophores. Lastly, we briefly explore the effect of PVP on adsorption-desorption dynamics of all three analytes, with particular attention to cationic R6G.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号