共查询到20条相似文献,搜索用时 15 毫秒
1.
Luminescence and chemiluminescence have been experimentally investigated in hydrodynamic cavitating flows. By using dedicated microdevices inserted inside a light tight box, photons counting has been made possible. Luminescence has been investigated with deionized water as the working fluid; chemiluminescence has resulted from cavitating alkaline luminol solutions, and has been correlated to hydroxyl radicals formation. For the first time, luminescent and chemiluminescent phenomena have been considered together on the same devices submitted to similar cavitating flow regimes. Degassed solutions enhance the luminescence and also the hydroxyl radical yield. Due to the small sizes of the channels, the lifetimes of the collapsing bubbles correspond to pseudo frequencies matching the range of optimal frequencies used in sonochemistry. New perspectives for the study of hydrodynamic cavitation as an advanced oxidation process are suggested. 相似文献
2.
Abstract The purpose of the present review is to sketch out the scope of luminol chemiluminescence in human urine analysis. Practical considerations and experimental requirements are indicated. The literature revised covers the papers of analytical interest that have appeared in approximately the last six years. 相似文献
3.
Red-G dye is one of the main dyes used in the textile industry to dye alpaca wool. Therefore, considering the large volume of processed wool in Perú, the development of efficient technologies for its removal is a present scientific issue. In this study, an integrated system based on hydrodynamic cavitation (HC) and photo-Fenton process was evaluated to remove the Red-G dye. Using a hybrid cavitation device (venturi + orifice plate), the effect of pH was evaluated, achieving 21 % of removal at pH 2 which was more than 80 % higher compared to pH 4 and 6. The effect of temperature was also evaluated in HC-system at pH 2, where percentage of dye degradation increased at lower temperatures (around 20 °C). Then, 50.7 % of dye was removed under optimized condition of HC-assisted Fenton process (FeSO4:H2O2 of 1:30), that value was improved strongly by UV-light incorporation in the HC-system, increasing to 99 % removal efficiency with respect to HC-assisted Fenton process and reducing the time to 15 min. Finally, the developed cavitation device in combination with photo-Fenton process removed efficiently the dye and thus could be considered an interesting option for application to real wastewater. 相似文献
4.
以异烟肼与K3 Fe(CN) 6的氧化还原反应对Luminol K3 Fe(CN) 6的化学发光反应的抑制为基础 ,设计出一种简便、快速、灵敏度高的流动注射抑制化学发光测定异烟肼的新方法。测定线性范围为 1 4× 10 -3 ~5 5 μg·mL-1,检出限为 4 8× 10 -4 μg·mL-1(3σ) ,RSD小于 3 5 % (n =9) ,并对 45种物质进行了干扰试验。本法成功地应用于药剂中异烟肼含量测定 ,回收率为 98 2 %~ 10 1%。本法与DSC法进行了对照 ,结果满意。 相似文献
5.
Yong-Ping Dong 《Journal of luminescence》2010,130(8):1539-4349
A multi-wall carbon nanotube/Nafion modified gold electrode (CNT/Nafion/GE) was fabricated by casting the composite film on the electrode surface. Electrogenerated chemiluminescence (ECL) of luminol at the modified gold electrode was studied under conventional cyclic voltammetry in alkaline Na2CO3-NaHCO3 buffer solution. Three ECL peaks were obtained. The most strong ECL peak (ECL-1) was enhanced about 20-fold at the CNT/Nafion modified gold electrode compared with that at the bare gold electrode. The emitter of all the ECL peaks was indentified as 3-aminophthalate. The intensities of ECL peaks were found to depend on the ratio of CNT/Nafion, the electrolytes, the pH, and the presence of O2 and N2. The mechanisms of all ECL peaks have been proposed. The results indicate that carbon nanotubes have a significantly catalytic effect on luminol ECL, which might further expand the analytical application of nanomaterial-modified electrode in the field of electrogenerated chemiluminescence. 相似文献
6.
Numerical analysis of the effects of radiation heat transfer and ionization energy loss on the cavitation Bubble?s dynamics 总被引:1,自引:0,他引:1
A numerical scheme for simulating the acoustic and hydrodynamic cavitation was developed. Bubble instantaneous radius was obtained using Gilmore equation which considered the compressibility of the liquid. A uniform temperature was assumed for the inside gas during the collapse. Radiation heat transfer inside the bubble and the heat conduction to the bubble was considered. The numerical code was validated with the experimental data and a good correspondence was observed. The dynamics of hydrofoil cavitation bubble were also investigated. It was concluded that the thermal radiation heat transfer rate strongly depended on the cavitation number, initial bubble radius and hydrofoil angle of attack. 相似文献
7.
化学发光分析法测定绿原酸 总被引:1,自引:0,他引:1
本文基于碱性介质中绿原酸对鲁米诺-铁氰化钾化学发光体系的抑制作用,首次建立了绿原酸的化学发光分析法,并探讨了其作用机理。方便简便、迅速、重复性好、灵敏度高。采用该法可测定1.0×10-8g/ml~1.0×10-5g/ml范围内的绿原酸,其检出限达到5.2×10-9g/ml,回收率为104%. 相似文献
8.
流动注射电化学发光分析法测定注射液中的硫酸庆大霉素 总被引:3,自引:0,他引:3
马红燕 《光谱学与光谱分析》2005,25(8):1210-1212
基于硫酸庆大霉素对鲁米诺在铂电极上弱的电氧化发光信号的强增敏作用与流动注射技术的结合,建立了一种测定硫酸庆大霉素的电化学发光分析新方法。该法测定硫酸庆大霉素的检出限为8.0×10-10 g·mL-1,线性范围为1.2×10-9~4.0×10-6 g·mL-1,相对标准偏差为2.0%(n =11)。该法简单、快速、灵敏,已成功地用于注射液中硫酸庆大霉素的测定。 相似文献
9.
This review tries to cover as many research fields and literatures associated with cavitation in thin liquid layer as possible. The intent was to summarize (i) list all the research fields related to cavitation in thin liquid layer that can be collected, (ii) advances in the investigation of cavitation in thin liquid layer, and (iii) draw attention to the relatively macroscopic cavitation behavior in thin liquid layer. 相似文献
10.
《Ultrasonics sonochemistry》2014,21(3):1213-1221
In this study, the removal of clofibric acid, ibuprofen, naproxen, ketoprofen, carbamazepine and diclofenac residues from wastewater, using a novel shear-induced cavitation generator has been systematically studied. The effects of temperature, cavitation time and H2O2 dose on removal efficiency were investigated. Optimisation (50 °C; 15 min; 340 mg L−1 of added H2O2) resulted in removal efficiencies of 47–86% in spiked deionised water samples. Treatment of actual wastewater effluents revealed that although matrix composition reduces removal efficiency, this effect can be compensated for by increasing H2O2 dose (3.4 g L−1) and prolonging cavitation time (30 min). Hydrodynamic cavitation has also been investigated as either a pre- or a post-treatment step to biological treatment. The results revealed a higher overall removal efficiency of recalcitrant diclofenac and carbamazepine, when hydrodynamic cavitation was used prior to as compared to post biological treatment i.e., 54% and 67% as compared to 39% and 56%, respectively. This is an important finding since diclofenac is considered as a priority substance to be included in the EU Water Framework Directive. 相似文献
11.
《Ultrasonics sonochemistry》2014,21(4):1392-1399
Industrial wastewater streams containing high concentrations of biorefractory materials like cyanides should ideally be treated at source. In the present work, degradation of potassium ferrocyanide (K4Fe(CN)6) as a model pollutant has been investigated using cavitational reactors with possible intensification studies using different approaches. Effect of different operating parameters such as initial concentration, temperature and pH on the extent of degradation using acoustic cavitation has been investigated. For the case of hydrodynamic cavitation, flow characteristics of cavitating device (venturi) have been established initially followed by the effect of inlet pressure and pH on the extent of degradation. Under the optimized set of operating parameters, the addition of hydrogen peroxide (ratio of K4Fe(CN)6:H2O2 varied from 1:1 to 1:30 mol basis) as process intensifying approach has been investigated. The present work has conclusively established that under the set of optimized operating parameters, cavitation can be effectively used for degradation of potassium ferrocyanide. The comparative study of hydrodynamic cavitation and acoustic cavitation suggested that hydrodynamic cavitation is more energy efficient and gives higher degradation as compared to acoustic cavitation for equivalent power/energy dissipation. The present work is the first one to report comparison of cavitation based treatment schemes for degradation of cyanide containing wastewaters. 相似文献
12.
In this paper, the decomposition of Rhodamine B (RhB) by hydrodynamic cavitation (HC), acoustic cavitation (AC) and the combination of these individual methods (HAC) have been investigated. The degradation of 20 L RhB aqueous solution was carried out in a self-designed HAC reactor, where hydrodynamic cavitation and acoustic cavitation could take place in the same space simultaneously. The effects of initial concentration, inlet pressure, solution temperature and ultrasonic power were studied and discussed. Obvious synergies were found in the HAC process. The combined method achieved the best conversion, and the synergistic effect in HAC was even up to 119% with the ultrasonic power of 220 W in a treatment time of 30 min. The time-independent synergistic factor based on rate constant was introduced and the maximum value reached 40% in the HAC system. Besides, the hybrid HAC method showed great superiority in energy efficiency at lower ultrasonic power (88–176 W). Therefore, HAC technology can be visualized as a promising method for wastewater treatment with good scale-up possibilities. 相似文献
13.
Ammonia is a commonly used compound in the domestic and industrial fields. If ammonia found in wastewater after use is not treated, even at low concentrations it may cause toxic effects in the receiving environment. In this study, a hydrodynamic cavitation reactor (HDC) was designed with the aim of removing ammonia. The effect of parameters like different cavitation numbers, airflow, temperature and initial concentration on NH3 removal was researched. The potential of hydrodynamic cavitation for removal of volatile gases, like NH3, was assessed with the aid of two film theory mathematical equations. Experimental studies were performed at fixed pH = 11. Under the conditions of 0.12 cavitation number, 25 L/min airflow, 30 °C temperature and 2500 mg/L initial concentration, in 24 h 98.4% NH3 removal efficiency was achieved. With the same experimental conditions without any air, the HDC reactor provided 89.5% NH3 removal at the end of 24 h.The HDC reactor is very effective for the removal of volatile gases from wastewater and it was concluded that even in the absence of aeration, the desired NH3 removal efficiency was provided. 相似文献
14.
We studied the hydrodynamic interaction between a colloidal particle close to flat rigid boundaries and the surrounding fluid using oscillating optical tweezers. A colloidal particle located near walls provides a model system to study the behavior of more complex systems whose boundaries can be modeled as effective walls, such as a blood tube, cell membrane, and capillary tube in bio-MEMS. In this study, we measure the hydrodynamic interaction directly without using the Stokes–Einstein relation. Two different cases are studied: a colloidal sphere near a single flat wall and a colloidal sphere located at the midplane between two flat walls. The colloidal hydrodynamics is measured as a function of the distance between the particle and the walls, and is compared with the theoretical results from well-defined hydrodynamics approximations. 相似文献
15.
16.
Nanoemulsion synthesis has proven to be an effective way for transportation of immobile, insoluble bioactive compounds. Citronella Oil (lemongrass oil), a natural plant extract, can be used as a mosquito repellent and has less harmful effects compared to its available market counterpart DEET (N, N-Diethyl-meta-toluamide). Nanoemulsion of citronella oil in water was prepared using cavitation-assisted techniques while investigating the effect of system parameters like HLB (Hydrophilic Lipophilic Balance), surfactant concentration, input energy density and mode of power input on emulsion quality. The present work also examines the effect of emulsification on release rate to understand the relationship between droplet size and the release rate. Minimum droplet size (60 nm) of the emulsion was obtained at HLB of 14, S/O1 ratio of 1.0, ultrasound amplitude of 50% and irradiation time of 5 min. This study revealed that hydrodynamic cavitation-assisted emulsification is more energy efficient compared to ultrasonic emulsification. It was also found that the release rate of nanoemulsion enhanced as the droplet size of emulsion reduced. 相似文献
17.
The effects of waste-activated sludge pretreatment using hydrodynamic cavitation for methane production 总被引:1,自引:0,他引:1
Disintegration of waste-activated sludge (WAS) is regarded as a prerequisite of the anaerobic digestion (AD) process to reduce sludge volume and increase methane yield. Hydrodynamic cavitation (HC), which shares a similar underlying principle with ultrasonication but is energy-efficient, was employed as a physical means to break up WAS. Compared with ultrasonic (180–3600 kJ/kg TS) and thermal methods (72,000 kJ/kg TS), HC (60–1200 kJ/kg TS) found to consume significantly low power. A synergetic effect was observed when HC was combined with alkaline treatment in which NaOH, KOH, and Ca(OH)2 were used as alkaline catalysts at pH ranging from 8 to 13. As expected, the production yield of CH4 gas increased proportionally as WAS disintegration proceeded. HC, when combined with alkaline pretreatment, was found to be a cost-effective substitute to conventional methods for WAS pretreatment. 相似文献
18.
R. M. Godbole 《Pramana》1998,51(1-2):217-228
After giving a very brief introduction to the resolved photon processes, I will summarize the latest experimental information
from HERA, on resolved photon contribution to largep
T jet production as well as to direct photon production. I will point out the interesting role that resolved photon processes
can play in increasing our understanding of the dynamics of the quarkonium production. I will then discuss the newer information
on the parton content of virtual photons as well as thek
T distribution of the partons in the photon. I will end by giving predictions of an eikonalized minijet model for σ
γγ
inel
which crucially uses the experimental measurement of the abovementionedk
T distribution and comparing them with data.
On leave of absence from Department of Physics, University of Bombay, Mumbai 400 076, India 相似文献
19.
《Ultrasonics sonochemistry》2014,21(1):1-14
Advanced oxidation processes such as cavitation and Fenton chemistry have shown considerable promise for wastewater treatment applications due to the ease of operation and simple reactor design. In this review, hybrid methods based on cavitation coupled with Fenton process for the treatment of wastewater have been discussed. The basics of individual processes (Acoustic cavitation, Hydrodynamic cavitation, Fenton chemistry) have been discussed initially highlighting the need for combined processes. The different types of reactors used for the combined processes have been discussed with some recommendations for large scale operation. The effects of important operating parameters such as solution temperature, initial pH, initial pollutant concentration and Fenton’s reagent dosage have been discussed with guidelines for selection of optimum parameters. The optimization of power density is necessary for ultrasonic processes (US) and combined processes (US/Fenton) whereas the inlet pressure needs to be optimized in the case of Hydrodynamic cavitation (HC) based processes. An overview of different pollutants degraded under optimized conditions using HC/Fenton and US/Fenton process with comparison with individual processes have been presented. It has been observed that the main mechanism for the synergy of the combined process depends on the generation of additional hydroxyl radicals and its proper utilization for the degradation of the pollutant, which is strongly dependent on the loading of hydrogen peroxide. Overall, efficient wastewater treatment with high degree of energy efficiency can be achieved using combined process operating under optimized conditions, as compared to the individual process. 相似文献
20.
Hydrodynamic cavitation (HC) is being increasingly used in a wide range of applications. Unlike ultrasonic cavitation, HC is scalable and has been used at large scale industrial applications. However, no information about influence of scale on performance of HC is available in the open literature. In this work, we present for the first time, experimental data on use of HC for degradation of complex organic pollutants in water on four different scales (~200 times scale-up in terms of capacity). Vortex based HC devices offer various advantages like early inception, high cavitational yield and significantly lower propensity to clogging and erosion. We have used vortex based HC devices in this work. 2,4 dichloroaniline (DCA) – an aromatic compound with multiple functional groups was considered as a model pollutant. Degradation of DCA in water was performed using vortex-based HC devices with characteristic throat dimension, dt as 3, 6, 12 and 38 mm with scale-up of almost 200 time based on the flow rates (1.3 to 247 LPM). Considering the experimental constraints on operating the largest scale HC device, the experimental data is presented here at only one value of pressure drop across HC device (280 kPa). A previously used per-pass degradation model was extended to describe the experimental data for the pollutant used in this study and a generalised form is presented. The degradation performance was found to decrease with increase in the scale and then plateaus. Appropriate correlation was developed based on the experimental data. The developed approach and presented results provide a sound basis and a data set for further development of comprehensive multi-scale modelling of HC devices. 相似文献