首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The chemical effects of the acoustic cavitation generated by ultrasound translates into the production of highly reactive radicals. Acoustic cavitation is widely explored in aqueous solutions but it remains poorly studied in organic liquids and in particular in liquid/solid media. However, several heterogeneous catalysis reactions take place in organic solvents.Thus, we sonicated trimethylene glycol and propylene glycol in the presence of silica particles (SiO2) of different sizes (5–15 nm, 0.2–0.3 µm, 12–26 µm) and amounts (0.5 wt% and 3 wt%) at an ultrasound frequency of 20 kHz to quantify the radicals generated. The spin trap 5,5-dimethyl-1-pyrrolin–N-oxide (DMPO) was used to trap the generated radicals for study by electron paramagnetic resonance (EPR) spectroscopy. We identified the trapped radical as the hydroxyalkyl radical adduct of DMPO, and we quantified it using stable radical 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) as a quantitation standard. The concentration of DMPO spin adducts in solutions containing silica size 12–26 µm was higher than the solution without particles. The presence of these particles increased the concentration of the acoustically generated radicals by a factor of 1.5 (29 µM for 0.5 wt% of SiO2 size 12–26 µm vs 19 µM for 0 wt%, after 60 min of sonication). Ultrasound produced fewest radicals in solutions with the smallest particles; the concentration of radical adducts was highest for SiO2 particle size 12–26 µm at 0.5 wt% loading, reaching 29 µM after 60 min sonication. Ultrasound power of 50.6 W produced more radicals than 24.7 W (23 µM and 18 µM, respectively, at 30 min sonication). Increased temperature during sonication generated more radical adducts in the medium (26 µM at 75 °C and 18 µM at 61 °C after 30 min sonication). Acoustic cavitation, in the presence of silica, increased the production of radical species in the studied organic medium.  相似文献   

2.
The present investigation deals with response of the particle size of aluminum on the reactive sintering of Ti–Al intermetallics and subsequently on their reaction kinetics and densification behavior. Aluminum powders of initial average particle size of 44 μm were milled for various durations in a planetary ball mill to produce average particles sizes of 100, 28 and 7 μm. These aluminum powders of various particle sizes i.e. 100, 28 and 7 μm were mixed with titanium powder of average particles size of 44 μm in the ratio of 1:1 corresponding to the Ti–Al intermetallic composition. The reactive sintering temperatures of the mixtures were determined by DTA and the effect of change in particle Al particle size has been determined for the activation energy ofthe self-propagating reaction. The effect of Al particle size on the sintering was determined by studying density and microstructure.  相似文献   

3.
In ultrasonic-assisted machining, the synergistic effect of the cavitation effect and micro-abrasive particles plays a crucial role. Studies have focused on the investigation of the micro-abrasive particles, cavitation micro-jets, and cavitation shock waves either individually or in pairs. To investigate the synergy of shock waves and micro-jets generated by cavitation with micro-abrasive particles in ultrasonic-assisted machining, the continuous control equations of a cavitation bubble, shock wave, micro-jet, and micro-abrasive particle influenced by the dimensionless amount (R/R0), a particle size-velocity–pressure model of the micro-abrasive particle was established. The effects of ultrasonic frequency, sound pressure amplitude, and changes in particle size on micro-abrasive particle velocity and pressure were numerically simulated. At an ultrasonic frequency of 20 kHz and ultrasonic sound pressure of 0.1125 MPa, a smooth spherical SiO2 micro-abrasive particle (size = 5 µm) was obtained, with a maximum velocity of 190.3–209.4 m/s and pressure of 79.69–89.41 MPa. The results show that in the range of 5–50 μm, smaller particle sizes of the micro-abrasive particles led to greater velocity and pressure. The shock waves, micro-jets, and micro-abrasive particles were all positively affected by the dimensionless amount (R/R0) of cavitation bubble collapse, the larger the dimensionless quantity, the faster their velocity and the higher their pressure.  相似文献   

4.
《X射线光谱测定》2004,33(6):414-420
Airborne particles were investigated in the central part of Riga during October 2000. Mass, black carbon and elemental concentrations of airborne particles were measured on Teflon filters from a dichotomous impactor, which samples fine (<2.5 µm) and coarse (2.5–10 µm) fractions of particles. In order to obtain more detailed information on the size distributions of different elements, a seven‐stage Batelle cascade impactor was used, in which quartz plates treated with silicone grease were utilized as backing for the different stages. Total reflection x‐ray fluorescence (TXRF) and energy‐dispersive x‐ray fluorescence (EDXRF) spectrometry were used for elemental analysis on the quartz plates and Teflon filters. The environmentally mobile part of the fine particle elements in the aerosol was determined by subtraction of x‐ray spectra measured before and after sequential leaching of the aerosol filters. The results of the different measurements show that naturally generated street dust and soil particles are dominant in coarse particles, whereas particles generated by human activities are dominant in the size fraction <0.5 µm. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
We used different sizes of gas atomized Fe–Si–Cr alloy powder to produce soft magnetic composites (SMCs), this alloy has higher resistivity than existing materials used in SMCs. These powders were prepared by sieving raw materials which had an average size from less than 25 μm to over 63 μm. Our experiments show that as particle size decreases, the magnetic saturation tends to increase, the sample made from the powder with particles 25–38 μm in size recorded the highest magnetic saturation of 169.38 emu/g. Additionally, as particle size decreased, permeability increased. The sample made from powder with particles under 25 μm had a permeability of 20.7 H/m at 1 MHz. Also, the relationship between particle size and quality factor was found to be inversely proportional. Finally, the minimum core-loss was 187.26 kW/m3 at 1 MHz for the sample made from powder whose constituent particles are under 25 μm.  相似文献   

6.
This work presents experimental evidence that the transition from gas-phase diffusion-limited combustion for aluminum particles begins to occur at a particle size of 10 μm at a pressure of 8.5 atm. Measurements of the particle temperature by AlO spectroscopy and three-color pyrometry indicate that the peak temperature surrounding a burning particle approaches the aluminum boiling temperature as particle size is decreased to 10 μm when oxygen is the oxidizer. This reduction indicates that reactions are occurring at or near the particle surface rather than in a detached diffusion flame. When CO2 is the oxidizer, the combustion temperatures remain near the aluminum boiling temperature for particles as large as 40 μm, indicating that the flame is consistently near the surface throughout this size range. Burn time measurements of 10 and 2.8 μm powders indicate that burn time is roughly proportional to particle diameter to the first power. The burn rates of micron- and nano-particles also show strong pressure dependence. These measurements all indicate that the combustion has deviated from the vapor-phase diffusion limit, and that surface or near-surface processes are beginning to affect the rate of burning. Such processes would have to be included in combustion models in order to accurately predict burning characteristics for aluminum with diameter less than 10 μm.  相似文献   

7.
Magnetic binary nanofillers containing multiwall carbon nanotubes (MWCNT) and hercynite were synthesized by Chemical Vapor Deposition (CVD) on Fe/AlOOH prepared by the sol–gel method. The catalyst precursor was fired at 450 °C, ground and sifted through different meshes. Two powders were obtained with different particle sizes: sample A (50–75 μm) and sample B (smaller than 50 μm). These powders are composed of iron oxide particles widely dispersed in the non-crystalline matrix of aluminum oxide and they are not ferromagnetic. After reduction process the powders are composed of α-Fe nanoparticles inside hercynite matrix. These nanofillers are composed of hercynite containing α-Fe nanoparticles and MWCNT. The binary magnetic nanofillers were slightly ferromagnetic. The saturation magnetization of the nanofillers depended on the powder particle size. The nanofiller obtained from powder particles in the range 50–75 μm showed a saturation magnetization 36% higher than the one formed from powder particles smaller than 50 μm. The phenomenon is explained in terms of changes in the magnetic environment of the particles as consequence of the presence of MWCNT.  相似文献   

8.
Powders of BaYxCe1 ? xO3 ? δ (x = 0, 0.1 and 0.15) with specific surface area of 6–8 m2g? 1 (BET equivalent particle size of 130–160 nm) were prepared by a modified solid-state route using nanocrystalline BaCO3 and CeO2 raw materials. These powders showed excellent densification at relatively low temperatures. Dense (96–97% relative density) ceramics with submicron grain size (0–4–0.6 µm) were obtained after sintering at 1250–1280 °C. Ceramics sintered at 1450 °C revealed only a moderate grain growth (grain size ≤ 2 µm), uniform microstructure and very high density (≥ 98%). The total conductivity of the submicron ceramics at 600 °C was comparable with the reference values reported in the literature, meaning that the high number of grain boundaries was not a limiting factor. On lowering temperature, the contribution of the blocking grain boundaries becomes progressively more important and the conductivity decreases in comparison to coarse-grained ceramics. Microscopic conductivities of grain interior and grain boundary are the same irrespective of grain size meaning that the different macroscopic behaviour is only determined by a geometric factor (a trivial size effect).  相似文献   

9.
A simple sol–gel precipitation technique to synthesize nano hydroxyapatite (HA) particles (30 nm) that show similar morphology, size and crystallinity to HA crystals of human teeth is reported. Calcium nitrate tetrahydrate and potassium dihydrogenphosphate were used as calcium and phosphorus precursors, respectively. Double distilled water was used as a diluting media for HA sol preparation and ammonia was used to adjust the pH to 11. After aging, the HA gel was dried at 40 °C and calcined to different temperatures ranging from 200 to 600 °C. The dried and calcined powders were characterized for phase composition using X-ray diffractrometry, and Fourier transform infra-red spectroscopy. The particle size and morphology was studied using Transmission electron microscopy. The particle size distribution analysis of HA powders showed skewed distribution plot. The phase and particle characterization studied above showed that HA calcined at 600 °C simulate HA crystals of teeth.  相似文献   

10.
This paper investigates the evolution of char properties with particle residence time during rapid pyrolysis of biochar under conditions pertinent to pulverized fuel (PF) applications. Two biochar samples were considered, prepared via slow (S-BC) and fast (F-BC) pyrolysis of mallee wood (150–250 µm) at 500 °C and two different heating rates (10 °C/s and ∼400 °C/s), respectively. The biochar samples were then subjected to rapid pyrolysis at 1300 °C using a novel drop-tube furnace (DTF), which enables direct determination of char yield experimentally. The evolution of char yield, the release of alkali and alkaline earth metallic (AAEM) species, and particle size and shape during rapid pyrolysis are investigated as a function of particle residence time (0.45 s to 1.4 s). The results show that char yields decrease from ∼77% to 75% when particle residence time increases from 0.45 s to 1.4 s. Rapid pyrolysis of F-BC has slightly higher char yields, due to the higher ash content of F-BC. More Cl in F-BC facilitates the release of Na during rapid pyrolysis, leading to the lower retention of Na in FC than in SC. Nevertheless, the retentions of K (∼90%), Mg (∼85%), and Ca (∼90%) are higher in FC, which can be ascribed to its higher contents of oxygen after rapid pyrolysis. The investigation of particle size and shape shows that biochar particles exhibit little changes after rapid pyrolysis, indicating their strong resistance to shrinkage and deformation even at high temperature.  相似文献   

11.
Common food powders and their mixtures, consisting of two powders with the same composition but different in particle size: fine (51–95 μm) and coarse (244–401 μm) NaCl, KCl, sucrose, rice starch, maltodextrin, whey protein, casein and soy protein, were coated on a target at 0 and −25 kV. Over half of the mixtures showed separation due to a difference in particle size. Separation was caused by the difference in individual transfer efficiency of the powders and interactions during coating. Both composition and differences in size were found to be important. Being in a mixture did not change the amount of dust formed.  相似文献   

12.
The aim of this study was to develop high load-capacity antibubbles that can be visualized using diagnostic ultrasound and the encapsulated drug can be released and delivered using clinically translatable ultrasound.The antibubbles were developed by optimising a silica nanoparticle stabilised double emulsion template.We produced an emulsion with a mean size diameter of 4.23 ± 1.63 µm where 38.9 ± 3.1% of the droplets contained a one or more cores. Following conversion to antibubbles, the mean size decreased to 2.96 ± 1.94 µm where 99% of antibubbles were <10 µm. The antibubbles had a peak attenuation of 4.8 dB/cm at 3.0 MHz at a concentration of 200 × 103 particles/mL and showed distinct attenuation spikes at frequencies between 5.5 and 13.5 MHz. No increase in subharmonic response was observed for the antibubbles in contrast to SonoVue®. High-speed imaging revealed that antibubbles can release their cores at MIs of 0.6. In vivo imaging indicated that the antibubbles have a long half-life of 68.49 s vs. 40.02 s for SonoVue®. The antibubbles could be visualised using diagnostic ultrasound and could be disrupted at MIs of ≥0.6. The in vitro drug delivery results showed that antibubbles can significantly improve drug delivery (p < 0.0001) and deliver the drug within the antibubbles. In conclusion antibubbles are a viable concept for ultrasound guided drug delivery.  相似文献   

13.
In recent years, individual control of one’s personal environment has been drawing increasing attention due to the growing interest in health care. Wearable devices are especially useful because of their controllability regardless of location. Humidity is one of the inevitable factors in the personal environment as a preventive against infectious diseases. Although atomization devices are commonly used as a method of humidity control, at present, there are no wearable humidity control devices. Vibration of a lithium niobate (LN) device in the thickness mode is a promising piezoelectric method for miniaturization of atomization devices for humidity control. To miniaturize the atomization device, the transducer size needs to be small not so much as to decrease the atomization efficiency. However, the effect of the device area on the atomization efficiency of LN at a size suitable for mounting in wearable devices has not been studied. Here, we conducted an atomization demonstration of LN devices with different sizes to evaluate particle size and atomization efficiency. Furthermore, to reveal the relationship between vibration behavior and atomization efficiency, resonance vibration in the MHz frequency band was evaluated by the finite element method and an impedance analyzer. The results showed that the peak size of water particles atomized by each device was in the range of 3.2 to 4.2 µm, which is smaller than particles produced by typical piezoelectric ceramics. Moreover, the best LN size for efficient atomization was found to be 8 mm × 10 mm among the five LN device sizes used in experiments. From the relationship between vibration behavior and atomization efficiency, the size of the transducer was suggested to affect the vibration mode. The obtained result suggested that the LN device is suitable for small wearable nebulizer devices.  相似文献   

14.
High protein milk ingredients, such as micellar casein powder (MCP), exhibit poor solubility upon reconstitution in water, particularly after long-time storage. In this study, ultrasonication (20 kHz, power density of 0.75 W/ml) was used to improve the solubility of aged MCP powders. For all the MCP powders (concentration varying from 0.5 to 5%, and storage of MCP at 50 °C for up to 10 days) it was found that short time ultrasonication (2.5 min) reduced the size of the protein particles from >30 μm to ∼0.1 μm, as measured by light scattering. This resulted in an improvement of solubility (>95%) for all the MCP powders. Cryo-electron microscopy and small x-ray angle scattering showed that the MCP powders dissolved into particles with morphologies and internal structure similar to native casein micelles in bovine milk. SDS-PAGE and RP-HLPC showed that ultrasonication did not affect the molecular weight of the individual casein molecules. Compared to overhead stirring using a 4-blade stirrer, ultrasonication required less than 10 times the drawn electrical energy density to achieve a particle size 10 times smaller.  相似文献   

15.
Ginger (Zingiber officinale) and Licorice (Glycyrrhiza glabra L.) are one of the most popular spices having a wide range of bioactive compounds that have varied biological and pharmacological properties. The study was aimed to extract polyphenols from Himalayan medicinal herbs ginger and licorice in different solvents using ultra-sonication technique. The extraction efficiency (EE) was determined, and the extracts were characterized for physical properties (particle size, colour values), total phenolics, flavonoids, antioxidant properties, and structural and morphological features. Ultra-sonicated ginger in aqueous phase had the highest EE of polyphenols (15.27%) as compared to other solvents. Similar trend was observed in licorice with EE of 30.52 % in aqueous phase followed by ethanol: water (50: 50), and methanol: water (50:50) with 28.52% and 26.39%, respectively. The preliminary screening showed the presence of tannins, phenolics, flavonoids, saponins and carbohydrates, steroids and alkaloids in all the extracts. The phenolic and flavonoid content of dried ginger was found higher in ethanolic extracts compared to fresh ones as revealed by HPLC. Similarly, for licorice, the ethanolic fractions had the highest polyphenolic content. The representative samples of ginger (ethanol: water 75:25 and ethylacetate: water 75:25) and licorice (ethanol: water 70:30 and methanol: water 50:50) were studied for FESEM and particle size. The results showed the agglomerated extract micro-particles with a diameter of 0.5–10 µm and increased particle size (ginger: 547 and 766 nm), and (licorice: 450 and 566 nm). The findings could be beneficial for the advancement of ginger and licorice processing, for the comprehension of these herbs as a source of natural antioxidants in different food formulations.  相似文献   

16.
Therapeutic focused ultrasound in combination with encapsulated microbubbles is being widely investigated for its ability to elicit bioeffects in the microvasculature, such as transient permeabilization for drug delivery or at higher pressures to achieve ‘antivascular’ effects. While it is well established that the behaviors of microbubbles are altered when they are situated within sufficiently small vessels, there is a paucity of data examining how the bubble population dynamics and emissions change as a function of channel (vessel) diameter over a size range relevant to therapeutic ultrasound, particularly at pressures relevant to antivascular ultrasound. Here we use acoustic emissions detection and high-speed microscopy (10 kframes/s) to examine the behavior of a polydisperse clinically employed agent (Definity®) in wall-less channels as their diameters are scaled from 1200 to 15 µm. Pressures are varied from 0.1 to 3 MPa using either a 5 ms pulse or a sequence of 0.1 ms pulses spaced at 1 ms, both of which have been previously employed in an in vivo context. With increasing pressure, the 1200 µm channel – on the order of small arteries and veins – exhibited inertial cavitation, 1/2 subharmonics and 3/2 ultraharmonics, consistent with numerous previous reports. The 200 and 100 µm channels – in the size range of larger microvessels less affected by therapeutic focused ultrasound - exhibited a distinctly different behavior, having muted development of 1/2 subharmonics and 3/2 ultraharmonics and reduced persistence. These were associated with radiation forces displacing bubbles to the distal wall and inducing clusters that then rapidly dissipated along with emissions. As the diameter transitioned to 50 and then 15 µm – a size regime that is most relevant to therapeutic focused ultrasound - there was a higher threshold for the onset of inertial cavitation as well as subharmonics and ultraharmonics, which importantly had more complex orders that are not normally reported. Clusters also occurred in these channels (e.g. at 3 MPa, the mean lateral and axial sizes were 23 and 72 µm in the 15 µm channel; 50 and 90 µm in the 50 µm channel), however in this case they occupied the entire lumens and displaced the wall boundaries. Damage to the 15 µm channel was observed for both pulse types, but at a lower pressure for the long pulse. Experiments conducted with a ‘nanobubble’ (<0.45 µm) subpopulation of Definity followed broadly similar features to ‘native’ Definity, albeit at a higher pressure threshold for inertial cavitation. These results provide new insights into the behavior of microbubbles in small vessels at higher pressures and have implications for therapeutic focused ultrasound cavitation monitoring and control.  相似文献   

17.
《Journal of Electrostatics》2007,65(10-11):704-708
Ten powders, differing in protein, carbohydrate and salt contents and ranging from 19 to 165 μm were coated by nonelectrostatic and electrostatic coating. Nonelectrostatic transfer efficiency (TE) increased to a maximum before leveling off with increasing particle size. Electrostatic TE either decreased or increased then decreased with increasing particle size. Powders became more free flowing as particle size increased. Since TE increases as powders become more free flowing, TE increased with particle size for both nonelectrostatic and electrostatic coating. For electrostatic coating, the effect of charge decreases with increasing particle size. Thus, the conflicting effects of ability to pick up charge and flowability caused an increase then decrease in the TE for powders coated electrostatically, and can also explain the exceptions. The average improvement in TE by electrostatic coating was 20%, with the improvement increasing as particle size decreased.  相似文献   

18.
In this study, daidzein microparticles (DMP) were prepared using an improved ultrasound-assisted antisolvent precipitation method. Preliminary experiments were conducted using six single-factor experiments, and principal component analysis (PCA) was adopted to obtain the three staple elements of the ultrasonic power, solution concentration, and nozzle diameter. The response surface Box-Behnken (BBD) design was used to optimize the level of the above factors. The optimal preparation conditions of the DMP were obtained as follows: the flow rate was 4 mL/min, the concentration of the daidzein solution was 16 mg/mL, the ratio of antisolvent to solvent (liquid-to-liquid ratio) was 9, the nozzle diameter was 300 μm, the ultrasonic power was 180 W (665 W/L), and the system speed was 760 r/min. The minimum average particle size of DMP was 181 ± 2 nm. The properties of daidzein particles before and after preparation were analyzed via scanning electron microscopy, X-ray diffraction analysis, Differential scanning calorimetry and Fourier transform infrared spectroscopy, no obvious change in its chemical structure was observed, but crystallinity was reduced. Compared with daidzein powder, DMP has a higher solubility and stronger antioxidant capacity. The above results indicate that the improved method of ultrasonication combined with antisolvent can reduce the size of daidzein particles and has a great potential in practical production.  相似文献   

19.
《Current Applied Physics》2014,14(3):371-377
In this study, we proposed a novel salt-leaching method using PCL and NaCl powders, known as the SLUP (salt leaching using powder) technique, which has several advantages: this technique does not require solvent, pressure, or unnecessary expensive devices. First, PCL powder (100–180 μm size) and NaCl powder (350–400 μm size) were prepared. Second, the PCL and NaCl powders were mixed at a certain ratio, and then the mixed powder was poured into a mold. Afterward, the mold was heated to melt the PCL powder in an oven at 80 °C for 15 min. Subsequently, after the PCL/NaCl mixture was separated from the mold, the PCL/NaCl mixture was soaked in D.I. water for 24 h to leach out the NaCl particles. Consequently, the remaining PCL structure was porous and could be used as a scaffold. To analyze the compressive modulus of the fabricated scaffold, a uniaxial compression test was performed using a UTM (universal testing machine), and the surface characteristics of the scaffold were observed using an SEM (scanning electron microscope). Additionally, cell-culture experiments were performed using hMSCs (human mesenchymal stem cells), and the cell-culture characteristics were assessed and compared with the characteristics from a conventional salt-leaching scaffold.  相似文献   

20.
This paper as the first time in the field reports the direct experimental evidence for demonstrating the important role of cooling in ash cenosphere fragmentation using a simple but unique combustion system. The combustion system used pulverised pyrite (38–45 µm) for combustion in drop-tube furnace under designed conditions (gas temperature: 1000 °C; residence time: 1.2 s), which produced dominantly ash cenosphere particles or fragments. The combustion products were quenched under various cooling conditions (represented by nominal cooling rates of 6400–11,800 °C/s) for sampling. The results show that increasing cooling rate from 6400 to 11,800 °C/s substantially intensifies ash cenosphere fragmentation. Such enhanced ash cenosphere fragmentation leads to a significant shift in the particle size distribution of ash collected in the cyclone (>10 µm) to much smaller sizes. It also produces considerably more particulate matter (PM) with aerodynamic sizes less than 10 µm (i.e., PM10) that consists of dominantly PM with aerodynamic sizes between 1 and 10 µm (i.e., PM110) and some PM with aerodynamic sizes less than 1 µm (i.e., PM1). It is further noted that the PM1 is mainly PM with aerodynamic sizes between 0.1 and 1 µm (i.e., PM0.11) and to a considerably lesser extent PM with aerodynamic sizes less than 0.1 µm (i.e., PM0.1). Chemical analyses further show that both ash and PM samples contain only Fe2O3, indicating that complete consumption of sulphur and full oxidation of iron have been achieved during pulverised pyrite combustion under the conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号