首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, the use of ultrasound energy for the production of furanic platforms from cellulose was investigated and the synthesis of furfural was demonstrated. Several systems were evaluated, as ultrasound bath, cup horn and probe, in order to investigate microcrystalline cellulose conversion using simply a diluted acid solution and ultrasound. Several acid mixtures were evaluated for hydrolysis, as diluted solutions of HNO3, H2SO4, HCl and H2C2O4. The influence of the following parameters in the ultrasound-assisted acid hydrolysis (UAAH) were studied: sonication temperature (30 to 70 °C) and ultrasound amplitude (30 to 70% for a cup horn system) for 4 to 8 mol L−1 HNO3 solutions. For each evaluated condition, the products were identified by ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS), which provide accurate information regarding the products obtained from biomass conversion. The furfural structure was confirmed by nuclear magnetic resonance (1H and 13C NMR) spectroscopy. In addition, cellulosic residues from hydrolysis reaction were characterized using scanning electron microscopy (SEM), which contributed for a better understanding of physical-chemical effects caused by ultrasound. After process optimization, a 4 mol L−1 HNO3 solution, sonicated for 60 min at 30 °C in a cup horn system at 50% of amplitude, lead to 78% of conversion to furfural. This mild temperature condition combined to the use of a diluted acid solution represents an important contribution for the selective production of chemical building blocks using ultrasound energy.  相似文献   

2.
In this work, ultrasound was applied for the conversion of tannic acid into gallic acid using only diluted H2O2 as reagent. Experiments were carried out using several types of ultrasonic horns operating at 20 kHz (VC750W processor). The following experimental conditions were evaluated: H2O2 concentration (0.2 to 8.5 mol L−1), horn type (10 to 25 mm of diameter), ultrasound amplitude (20 to 70%), sonication time (10 to 45 min), tannic acid concentration (170 to 1360 mg L−1), and reaction temperature (50 to 90 °C). Gallic acid production was monitored with ultra-performance liquid chromatography with high-resolution time-of-flight mass spectrometry (UPLC-ToF-MS). The isolated gallic acid was confirmed with nuclear magnetic resonance (1H and 13C NMR). It is important to emphasize that this study was developed as a proof of concept to demonstrate the potential of ultrasound for tannic acid conversion into gallic acid using just diluted H2O2. Under selected conditions gallic acid production yield was 128 ± 4 mg g−1 of initial tannic acid (using 170 mg L−1 of tannic acid as starting material). Reaction time was set as 30 min, which was carried out using 1 mol L−1 H2O2 and ultrasound amplitude of 50% at 90 °C. At silent conditions (mechanical stirring, from 100 to 1000 rpm), gallic acid production was halved (less than 78 ± 4 mg g−1 of initial tannic acid).  相似文献   

3.
The tannery industry generates huge amount of waste with high Cr concentration, being classified as a dangerous waste. The development of alternative treatments for these residues aiming environmental friendly protocols are important topics of research. In this work, the use of ultrasound (US) energy for Cr removal from residual tanned leather was investigated. Ultrasound-assisted extraction (UAE) experiments were carried out in several systems as ultrasonic baths, cup horns, and probes, allowing to evaluate several frequencies (20–130 kHz) and power delivered to the extraction system. The following experimental conditions were evaluated: extraction solution (HCl, HNO3, H2SO4, CH2O2 and C2H2O4), temperature (10–90 °C), time (1–40 min), US amplitude (10–90%), feedstock amount (50–450 mg), and concentration of extraction solution (0.1–4 mol L−1). A multivariate factorial design with 10 axial points and 3 central points was applied. After UAE optimization an efficiency of 92% was achieved for Cr removal using 150 mg of feedstock, 3 mol L−1 HNO3, at 30 °C, 90% of amplitude, and 30 min. The same efficiency was not observed using mechanical stirring (100–500 rpm), which was lower than 65%. To prove the applicability of the proposed process some experiments for scaling up were performed using several reactor loads (1–9 L). Moreover, using the proposed UAE process Cr was efficiently removed at lower reaction time and at room temperature only by using US and diluted acid solution, representing energy and reagents saving.  相似文献   

4.
By applying pulsed high voltage discharge to a needle-mesh reactor that using seven acupuncture needles as discharge electrode and stainless steel wire mesh as ground electrode, nitrogen from bubbling gas could be fixed into NO2? and NO3? with equivalent mol H+ produced in the liquid phase and a small amount of NO and NO2 yielded in the gas phase. The HNO2 was originally formed and then converted into HNO3. The ·OH and H2O2 stimulated the conversion reaction from HNO2 to HNO3, which caused HNO2 concentration increased in the first 12 min and then decreased until lower than its detection limit. The concentration of HNO3 still increased with discharge time. After 36 min, HNO3 was the only and ultimate product in the liquid. The total yield of HNO2 and HNO3 could be affected by processing parameters such as electric factors of peak voltage and frequency, mesh size of ground electrode and content of nitrogen in N2/O2 bubbling. Increasing peak voltage or frequency, the total yield of HNO2 and HNO3 increased. Gas composition had a heavy impact on the fixation efficiency that obtained its maximum value at an oxygen content of 66.7% with bubbling O2/N2 gas. At the end of the 36 min discharge, the HNO3 concentration with bubbling air was 2.215 mmol L?1 at an applied voltage of 25 kV, pulse repetition frequency of 140 Hz and ground electrode mesh of 20 × 20. The energy yield was about 1.22 g (HNO3)/kWh.  相似文献   

5.
A lab-scale ultrasound enhancing Anammox reactor (ABRU) was established and irradiated once a week by ultrasound with the optimal parameter (frequency of 25.0 kHz, intensity of 1.00 W cm−2 and exposure time of 36.0 s) obtained by response surface methodology (RSM). ABRU and the controlled Anammox reactor (ABRC) without ultrasonic treatment were operated in parallel. The start-up time of Anammox process in ABRU (59 d) was shorter than that in ABRC (69 d). At the end of the nitrogen load-enhancing period, NLR (0.500 kg N m−3 d−1) and NRR (0.430 kg N m−3 d−1) in ABRU were both higher than NLR (0.400 kg N m−3 d−1) and NRR (0.333 kg N m−3 d−1) in ABRC. The results of RTQ-PCR demonstrated that the specific low-intensity ultrasound irradiation improved the enrichment levels of AnAOB in mature sludge. SEM images and the observation of the macroscopic morphology of mature sludge showed that the ultrasound irradiation strengthened the formation of Anammox granular sludge, thereby improved the interception capacity and impact load resistance of the reactor, and enhanced the nitrogen removal performance in ABRU. The ultrasonic enhanced Anammox reactor based on an ABR with the optimal parameters can promote the rapid start-up and efficient and stable operation of the Anammox process at normal temperature (around 25.0 °C).  相似文献   

6.
In this study, a novel hydrodynamic cavitation unit combined with a glow plasma discharge system (HC-GPD) was proposed for the degradation of pharmaceutical compounds in drinking water. Metronidazole (MNZ), a commonly used broad-spectrum antibiotic, was selected to demonstrate the potential of the proposed system. Cavitation bubbles generated by hydrodynamic cavitation (HC) can provide a pathway for charge conduction during glow plasma discharge (GPD). The synergistic effect between HC and GPD promotes the production of hydroxyl radicals, emission of UV light, and shock waves for MNZ degradation. Sonochemical dosimetry provided information on the enhanced formation of hydroxyl radicals during glow plasma discharge compared to hydrodynamic cavitation alone. Experimental results showed a MNZ degradation of 14% in 15 min for the HC alone (solution initially containing 300 × 10−6 mol L−1 MNZ). In experiments with the HC-GPD system, MNZ degradation of 90% in 15 min was detected. No significant differences were observed in MNZ degradation in acidic and alkaline solutions. MNZ degradation was also studied in the presence of inorganic anions. Experimental results showed that the system is suitable for the treatment of solutions with conductivity up to 1500 × 10−6 S cm−1. The results of sonochemical dosimetry showed the formation of oxidant species of 0.15 × 10−3 mol H2O2 L−1 in the HC system after 15 min. For the HC-GPD system, the concentration of oxidant species after 15 min reached 13 × 10−3 mol H2O2 L−1. Based on these results, the potential of combining HC and GPD systems for water treatment was demonstrated. The present work provided useful information on the synergistic effect between hydrodynamic cavitation and glow plasma discharge and their application for the degradation of antibiotics in drinking water.  相似文献   

7.
This work considered the sonochemical degradation (using a bath-type reactor, at 375 kHz and 106.3 W L-1, 250 mL of sample) of three representative halogenated pharmaceuticals (cloxacillin, diclofenac, and losartan) in urine matrices. The action route of the process was initially established. Then, the selectivity of the sonochemical system, to degrade the target pharmaceuticals in simulated fresh urine was compared with electrochemical oxidation (using a BDD anode, at 1.88 mA cm−2), and UVC/H2O2 (at 60 W of light and 500 mol L-1 of H2O2). Also, the treatment of cloxacillin in an actual urine sample by ultrasound and UVC/H2O2 was evaluated. More than 90% of the target compounds concentration, in the simulated matrix, was removed after 60 min of sonication. However, the sono-treatment of cloxacillin in the real sample was less efficient than in the synthetic urine. The ultrasonic process achieved 43% of degradation after 90 min of treatment in the actual matrix. In the sonochemical system, hydroxyl radicals in the interfacial zone were the main degrading agents. Meanwhile, in the electrochemical process, electrogenerated HOCl was responsible for the elimination of pharmaceuticals. In turn, in UVC/H2O2 both direct photolysis and hydroxyl radicals degraded the target pollutants. Interestingly, the degradation by ultrasound of the pharmaceuticals in synthetic fresh urine was very close to the observed in distilled water. Indeed, the sonodegradation had a higher selectivity than the other two processes. Despite the sono-treatment of cloxacillin was affected by the actual matrix components, this contrasts with the UVC/H2O2, which was completely inhibited in the real urine. The sonochemical process led to 100% of antimicrobial activity (AA) elimination after 75 min sonication in the synthetic urine, and ∼ 20% of AA was diminished after 90 min of treatment in the real matrix. The AA decreasing was linked to the transformations of the penicillin nucleus on cloxacillin, the region most prone to electrophilic attacks by radicals according to a density theory functional analysis. Finally, predictions of biological activity confirmed that the sono-treatment decreased the activity associated with cloxacillin, diclofenac, and losartan, highlighting the positive environmental impact of degradation of chlorinated pharmaceuticals in urine.  相似文献   

8.
Single-pulse shock-tube experiments were used to study the thermal decomposition of selected oxygenated hydrocarbons: Ethyl propanoate (C2H5OC(O)C2H5; EP), propyl propanoate (C3H7OC(O)C2H5; PP), isopropyl acetate ((CH3)2HCOC(O)CH3; IPA), and methyl isopropyl carbonate ((CH3)2HCOC(O)OCH3; MIC) The consumption of reactants and the formation of stable products such as C2H4 and C3H6 were measured with gas chromatography/mass spectrometry (GC/MS). Depending on the considered reactant, the temperatures range from 716–1102 K at pressures between 1.5 and 2.0 bar. Rate-coefficient data were obtained from first-order analysis. All reactants primarily decompose by six-center eliminations: EP → C2H4 + C2H5COOH (propionic acid); PP → C3H6 + C2H5COOH; IPA → C3H6 + CH3COOH (acetic acid); MIC → C3H6 + CH3OC(O)OH (methoxy formic acid). Experimental rate-coefficient data can be well represented by the following Arrhenius expressions: k(EP → products) = 1013.49±0.16 exp(−214.95±3.25 kJ/mol/RT) s−1; k(PP → products) = 1012.21±0.16 exp(–191.21±2.79 kJ/mol/RT) s−1; k(IPA → products) = 1013.10±0.31 exp(–186.38±5.10 kJ/mol/RT) s−1; k(MIC → products) = 1012.43±0.29 exp(–165.25±4.46 kJ/mol/RT) s−1. The determination of rate coefficients was based on the amount of C2H4 or C3H6 formed. The potential energy surface (PES) of the thermal decomposition of these four reactants was determined with the G4 composite method. A master-equation analysis was conducted based on energies and molecular properties from the G4 computations. The results indicate that the length of a linear alkyl substituent does not significantly influence the rate of six-center eliminations, whereas the change from a linear to a branched alkyl substituent results in a significant reactivity increase. The comparison between rate-coefficient data also shows that alkyl carbonates have higher reactivity towards decomposition by six-center elimination than esters. The results are discussed in in the context of reactivity patterns of carbonyl compounds.  相似文献   

9.
《Ultrasonics sonochemistry》2014,21(4):1358-1365
Ultrasonic-assisted heterogeneous Fenton reaction was used for degradation of nitrobenzene (NB) at neutral pH conditions. Nano-sized oxides of α-Fe2O3 and CuO were prepared, characterized and tested in degradation of NB (10 mg L−1) under sonication of 20 kHz at 25 °C. Complete degradation of NB was effected at pH 7 in presence of 10 mM H2O2 after 10 min of sonication in presence of α-Fe2O3 (1.0 g L−1), (k = 0.58 min−1) and after 25 min in case of CuO (k = 0.126 min−1). α-Fe2O3 showed also effective degradation under the conditions of 0.1 g L−1 oxide and 5.0 mM of H2O2, even though with a lower rate constant (0.346 min−1). Sonication plays a major role in enhancing the production of hydroxyl radicals in presence of solid oxides. Hydroxyl radicals-degradation pathway is suggested and adopted to explain the differences noted in rate constants recorded on using different oxides.  相似文献   

10.
A recyclable heterogeneous catalyst has been successfully developed for application in a Fenton-type advanced oxidation process without adding external H2O2. LaFeO3 was prepared from Fe(NO3)3·9H2O and La(NO3)·6H2O by a simple sol-gel method and its catalytic efficiency was evaluated for mineralization of 4-chlorophenol using a Fenton-like process. The mineralization process was carried out under ultrasonication in presence of heterogeneous LaFeO3 catalyst with H2O2 that was produced during ultrasonication. The mineralization process was monitored through total organic carbon (TOC) analysis. Very importantly, utmost 5-fold synergism was evidenced by the ultrasound mediated LaFeO3-catalyzed system. Besides, more than twofold synergism was observed by combining the ultrasound assisted LaFeO3 catalytic process and potassium persulfate (KPS) assisted advanced oxidation process. It is worth to mention that complete mineralization (∼96%) of 4-chlorophenol (initial concentration of 1.25 × 10−4 M) was observed within 1 h in the presence of LaFeO3 (0.5 g L−1) and KPS (1.0 mmol) under ultrasonication (40 kHz). Even after four cycles, the activity of LaFeO3 remained intact which proved its recyclability. Extremely reusable heterogeneous LaFeO3 catalyst makes the system more interesting from both economic and environmental points of view.  相似文献   

11.
This study evaluated the application of ultrasound alone or combined with chlorine dioxide (ClO2) for Salmonella Typhimurium and Escherichia coli inactivation in poultry processing chiller tank water. A Full Factorial Design (FFD) 22 was conducted for each microorganism to evaluate the effect of ultrasound exposure time (x1: 1 to 9 min; fixed: 37 kHz; 330 W; 25 °C) using a bath, and ClO2 concentration (x2: 1 to 17 mg L−1) on microorganism count expressed in log CFU mL−1 in distilled water. Variable x2 had a negative effect on Salmonella Typhimurium (-5.09) and Escherichia coli (-2.00) count, improving the inactivation; while a x1 increase present no inactivation improvement, explaining the use of x1 lower level (1 min) and x2 higher level (17 mg L−1). The best condition for microorganism inactivation based on FFD was evaluated in chiller tank water (with organic matter) at 25, 16, and 4 °C; x1 was kept (1 min), however x2 was adjusted to obtain the same residual free chlorine (2.38 mg L−1) considering the ClO2 consumption by organic matter, achieving the value of 30 mg L−1. An inactivation of 49% and 31% were observed for Salmonella Typhimurium and Escherichia coli. When ultrasound was replaced by a simple agitation in the presence of ClO2, there was no inactivation for both microorganisms. Moreover, at poultry carcass pre-chilling (16 °C) and chilling (4 °C) conditions, the synergism of ultrasound combined with ClO2 was more pronounced, with microorganisms’ reductions up to 100%.  相似文献   

12.
Gd2Ti2O7-nHZSM-5 (GTO-nZ) composites are prepared using HZSM-5 zeolite via a sol–gel route. The hydrochloric acid concentration in zeolite treatment can affect the properties of GTO-nZ composites. GTO has a typical pyrochlore phase Gd2Ti2O7, and HZSM-5 zeolite does not have noticeable influences on GTO crystal formation. The bandgap energies are 3.77, 3.73, 3.67, 3.65, and 3.64 eV for GTO-nZ composites when hydrochloric acid concentration is 0, 0.2, 0.3, 0.5, and 1 mol L−1, respectively. The isotherms of GTO-nZ composites are classified as IUPAC type IV of mesoporous material, while the adsorbed nitrogen quantities on GTO-nZ composites are much larger than the nitrogen quantity on GTO. The small amount of HZSM-5 zeolite can improve the porosity of GTO in the composites, and the surface area of GTO in the composites is significantly enlarged. The hydrochloric acid concentration has an apparent influence on the photocatalytic degradation efficiency of GTO-nZ composites. RBR-X3B (Reactive Brilliant Red-X3B) degradation efficiency is enhanced with increasing hydrochloric acid concentration to the maximum value at 0.3 mol L−1. The reaction rate constants are 2.03 × 10−2, 9.1 × 10−3, and 3.1 × 10−3 min−1 for GTO-0.3Z, GTO-0Z, and GTO, respectively.  相似文献   

13.
In view of the increasing demand for rare-earth elements (REE) in many areas of high technology, alternative methods for the extraction of these elements have been developed. In this work, a process based on the use of ultrasound for the extraction of REE from carbonatite (an igneous rock) is proposed to avoid the use of concentrated reagents, high temperature and excessive extraction time. In this pioneer work for REE extraction from carbonatite rocks in a preliminary investigation, ultrasonic baths, cup horn systems or ultrasound probes operating at different frequencies and power were evaluated. In addition, the power released to the extraction medium and the ultrasound amplitude were also investigated and the temperature and carbonatite mass/volume of extraction solution ratio were optimized to 70 °C and 20 mg/mL, respectively. Better extraction efficiencies (82%) were obtained employing an ultrasound probe operating at 20 kHz for 15 min, ultrasound amplitude of 40% (692 W dm−3) and using a diluted extraction solution (3% v/v HNO3 + 2% v/v HCl). It is important to mention that high extraction efficiency was obtained even using a diluted acid mixture and relatively low temperature in comparison to conventional extraction methods for REE. A comparison of results with those obtained by mechanical stirring (500 rpm) using the same conditions (time, temperature and extraction solution) was carried out, showing that the use of ultrasound increased the extraction efficiency up to 35%. Therefore, the proposed ultrasound-assisted procedure can be considered as a suitable alternative for high efficiency extraction of REE from carbonatite rocks.  相似文献   

14.
《Current Applied Physics》2020,20(4):550-556
The absolute density measurement of atomic species such as hydrogen is crucial for plasma processing because of their strong chemical reactivity. In this work, to measure the hydrogen atom density in Ar/H2 inductively coupled plasmas (ICP), the self-absorption-applied vacuum ultraviolet absorption spectroscopy (VUVAS) is studied with a micro-hollow cathode H2/He discharge lamp (MHCL) emitting VUV light (Lyman alpha line; Lα 121.56 nm). The absolute density of hydrogen atoms in the ICP is investigated for various powers (50 W–850 W) in the low pressure region (30 mTorr–50 mTorr). The hydrogen density in remote plasma region is shown to vary from 2.1 × 1011 cm−3 to 1.25 × 1012 cm−3 with respect to plasma power.  相似文献   

15.
Nanoparticles of a new three-dimensional Mn(II) coordination supramolecular compound, [Mn(L)2(H2O)2] (1), (L = 1H-1,2,4-triazole-3-carboxylate), have been synthesized by a sonochemical process and characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRPD), FT-IR spectroscopy and elemental analyses. Structural determination of compound 1 reveals the Mn(II) ion is six coordinated, bonded to two nitrogen atoms, two oxygen atoms from the L ligand and two water molecules. The thermal stability of compound 1 both its bulk and nano-size has been studied by thermal gravimetric (TG) and differential thermal analyses (DTA) and compared each other. Concentration of initial reagents effects on size and morphology of nano-structured compound 1, have been studied and shows that low concentrations of initial reagents decreased particles size and also leaded to fibrous-like nanostructures morphology. Mn3O4 nano-structure with an octahedral-like morphology were simply synthesized by solid-state transformation of compound 1 at 650 °C.  相似文献   

16.
The low-energy electron spectrum from the 57Co decay has been examined in the region from 0 up to 15 keV at instrumental resolution ranging from 2 to 15 eV. Two electrostatic spectrometers and radioactive sources prepared by vacuum evaporation of 57Co onto Al foils were utilized. Relative intensities of the main spectrum components have been obtained as follows: (TSE+LLX+Shake-off)/LMM/KLL/KLM/KMM/K−14.4/L−14.4/MN−14.4=116±12/51±4/59.7±1.8/15.2±0.4/1.15±0.07/49.6±1.5/5.05±0.15/0.79±0.02 where TSE means “true secondary electrons”. Absolute and relative energies of the LMM, KLL, KLM, and KMM Auger transitions in Fe have also been determined, as well as their relative intensities with the exception of the LMM lines, the shapes of which were strongly distorted due to the inelastic electron scattering and probably also chemical effects. From the measured conversion electron lines of the 14.4 keV M1 transition in 57Fe, a transition energy of 14412.8±0.8 eV and the E2 admixture less than 8×10−6 were derived. Relative intensities of both the KL2,3(M4,5N1) Auger line group and the M4,5N1−14.4 conversion line were found to be lower by about 30% for the “oxide” state of decaying 57Co atoms than for the “metallic” state. Pronounced broadenings of narrow spectrum lines have been observed as a consequence of the oxidation of the 57Co sources in the laboratory atmosphere. Natural widths for most of the KLL, KLM, and KMM Auger lines and those of the K, L1, L2, L3, M1, M2, M3 and N1 atomic levels in 57Fe were also determined.  相似文献   

17.
For the first time, piezocatalysis activity has been observed in bismuth-based MOFs (ultrasound vibration treatment) with two different morphologies, namely FCAU-17 (flakes) and CAU-17 (rods). CAU-17 and FCAU-17 were synthesized by solvothermal and ultrasonic methods, respectively, with the same organic ligand (1,3,5-benzenetricarboxylic acid) and metal salt (Bi(NO3)3·5H2O). Among these, the apparent rate constant k of CAU-17 in piezo-photocatalysis is 3.9 × 10−2 min−1, which is ∼3.9 and ∼ 1.5 times of those in photocatalysis and piezocatalysis, respectively. CAU-17 showed much high piezo-photocatalytic activity during degradation of RhB. Efficiently coupling between piezocatalysis and photocatalysis has been realized in rod-like CAU-17 (ultrasound vibration treatment). Our results provide a new strategy to improve catalytic performance of Bi MOFs through an efficient synergistic piezo-photocatalysis approach for environmental remediation.  相似文献   

18.
The rate coefficient k1 for NH2 + N2H4 was measured to be (5.4 ± 0.4) × 10−14 cm3 molecule−1 s−1 at 296 K. NH2 was generated by pulsed laser photolysis of NH3 at 193 nm, and monitored as a function of time by pulsed laser-induced fluorescence excited at 570.3 nm under pseudo-first order conditions in the presence of excess N2H4 in an Ar bath gas. This reaction was also investigated computationally, with geometries and scaled frequencies obtained with M06-2X/6-311+G(2df,2p) theory, and single-point energies from CCSD(T)-F12b/cc-pVTZ-F12 theory, plus a term to correct approximately for electron correlation through CCSDT(Q). Three connected transition states are involved and rate constants were obtained via Multistructural Improved Canonical Variational Transition State Theory with Small Curvature Tunneling. Combination of experiment and theory leads to a recommended rate coefficient for hydrogen abstraction of k1 = 6.3 × 10−23 T3.44 exp(+289 K/T) cm3 molecule−1 s−1. The minor channel for H + N2H4 forming NH2 + NH3 was characterized computationally as well, to yield 5.0 × 10−19 T2.07 exp(-4032 K/T) cm3 molecule−1 s−1. These results are compared to several discordant prior estimates, and are employed in an overall mechanism to compare with measurements of half-lives of hydrazine in a shock tube.  相似文献   

19.
We herein report a synthesis nitrogen-doped graphite oxide (N-doped GO) by heat treatment with melamine. The N-doped GO contains 4 at % of nitrogen, incurring the oxygen reduction reaction by nitrogen functional groups. Two kinds of aqueous electrolytes are used for finding the electrocatalytic activities, resulting in symmetric oxygen reduction reaction peaks at −0.8 and 0 V in 6 M KOH and 1 M H2SO4 electrolytes, respectively. The N-doped GO is more activated in the acid electrolyte compared to thermally reduced graphite oxide (TrGO). Specific volumetric capacitance of N-doped GO in 1.8 M tetraethylmethylammonium tetrafluoroborate electrolyte is 57.4 F cc−1 which is higher than 30.5 F cc−1 of the TrGO, demonstrating positive effects of the nitrogen doping in the organic electrolytes for the energy storage devices.  相似文献   

20.
A promising approach of ultrasound assisted oxidative desulfurization (UAOD) was studied for deep desulfurization of simulated sulphated turpentine containing dimethyl disulphide (DMDS) as model pollutant. The effect of ultrasound parameters such as power (80–120 W) and duty cycle (50–80%) as well as operating conditions as initial concentration (50–100 ppm), volume (100–300 ml) and temperature (28 °C as ambient condition, 50–70 °C) on the extent of desulfurization have been studied. The effect of addition of various oxidizing agents such as hydrogen peroxide over the range of 3–18 g/L, Fenton reagent by varying FeSO4 loading from 0.75 g/L to 1.75 g/L at constant H2O2 loading and titanium dioxide (loading over the range 1–4 g/L) in the presence of ultrasonic horn have also been investigated at laboratory scale. The addition of oxidizing agents in presence of ultrasound enhanced the extent of DMDS removal. The extent of desulfurization was found to be remarkably low for individual approaches as compared to combination approaches of US/oxidizing agents. The kinetic analysis revealed that oxidation follows first order kinetics. A significant increase in cavitational yield was observed for combination approach of US/H2O2/TiO2 (5.78 × 10−9 g/L) compared to individual ultrasound approach (2.04 × 10−9 g/L). Under best conditions of 120 W power, 70% duty cycle, 50 ppm initial concentration, 15 g/L H2O2 loading and 4 g/L TiO2 loading, 100% desulfurization was obtained at 23.19 Rs/L as the treatment cost. Based on the obtained results it can be concluded that US/H2O2/TiO2 approach is highly efficient desulfurization technique for deep desulfurization of simulated sulphated turpentine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号