首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Ultrasonic-assisted treatment is an eco-friendly and cost-effective emulsification method, and the acoustic cavitation effect produced by ultrasonic equipment is conducive to the formation of stable emulsion. However, its effect on the underlying stability of low-molecular-weight oyster peptides (LOPs) functional-nutrition W1/O/W2 double emulsion has not been reported. The effects of different ultrasonic power (50, 75, 100, 125, and 150 W) on the stability of double emulsions and the ability to mask the fishy odor of LOPs were investigated. Low ultrasonic power (50 W and 75 W) treatment failed to form a well-stabilized double emulsion, and excessive ultrasound treatment (150 W) destroyed its structure. At an ultrasonic power of 125 W, smaller particle-sized double emulsion was formed with more uniform distribution, more whiteness, and a lower viscosity coefficient. Meanwhile, the cavitation effect generated by 125 W ultrasonic power improved storage, and oxidative stabilities, emulsifying properties of double emulsion by reducing the droplet size and improved sensorial acceptability by masking the undesirable flavor of LOPs. The structure of the double emulsion was further confirmed by optical microscopy and confocal laser scanning microscopy. The ultrasonic-assisted treatment is of potential value for the industrial application of double emulsion in functional-nutrition foods.  相似文献   

2.
Ultrasound is an emerging and promising method for demulsification, which is highly affected by acoustic parameters and emulsion properties. Herein, a series of microscopic and dehydration experiments are carried out to investigate the parameter optimization of ultrasonic separation. The results show that the optimal acoustic parameters highly depend on the emulsion properties. For low frequency ultrasonic standing waves (USWs), mechanical vibrations not only facilitate droplet collision and coalescence, but also disperse the surfactant absorbed on the interface to decrease the interfacial strength. Therefore, low frequency ultrasound is suitable for separating emulsions with high viscosity and high interfacial strength. Increasing the energy density to produce moderate cavitation can increase demulsification efficiency. However, excessive cavitation results in secondary emulsification. In high frequency USWs, the droplets migrate directionally and form bandings, thereby promoting droplet coalescence. Therefore, high frequency ultrasound is favorable for separating emulsions with low dispersed phase content and small droplet size. Increasing the energy density can accelerate the aggregation of droplets, however, excessive energy density causes acoustic streaming that disturbs the aggregated droplets, resulting in reduced demulsification efficiency. This work presents rules for acoustic parameter optimization, further advancing industrial applications of ultrasonic separation.  相似文献   

3.
Pickering emulsions are eco-friendly, stabilized by solid particles, and have an essential role in leading industries. Although Pickering emulations have found several applications, surprisingly few investigations have attempted to explore the effectiveness of various mechanical processes for its production. To fill these gaps, the present investigation comprehensively examined the application of various Pickering emulsion preparation processes such as rotor-stator homogenization emulsification (R-SH), ultrasonic emulsification, and their combined processes by using nano-silica particles. The influences of emulsification time and intensity on emulsion droplets' distribution were analyzed as indicative factors. The kerosene/water nano-silica Pickering emulsion was utilized for all assessments. The obtained results demonstrated that the main distribution peak of the emulsion prepared by R-SH occurred where the chord length was greater than 40 μm. Micro-scale nano-silica-aggregates generated large droplets, while the fine-emulsion fraction was significantly increased after ultrasonic treatment. The experimental results showed that the emulsion prepared only by ultrasound needed substantial power to form a Pickering emulsion since the oil phase was difficult to disperse in the water phase. Finally, it was concluded that preprocessing by R-SH could form a stable and uniform emulsion speedily, which is essential for ultrasound emulsion preparation.  相似文献   

4.
An ultrasonic technique was applied to preparation of two-phase water-in-oil (W/O) emulsified fuel of water/diesel oil/surfactant. In this study, an ultrasonic apparatus with a 28 kHz rod horn was used. The influence of the horn tip position during ultrasonic treatment, sonication time and water content (5 or 10 vol%) on the emulsion stability, viscosity, water droplet size and water surface area of emulsion fuels prepared by ultrasonication was investigated. The emulsion stability of ultrasonically-prepared fuel significantly depended on the horn tip position during ultrasonic irradiation. It was found that the change in the stability with the horn tip position was partly related to that in the ultrasonic power estimated by calorimetry. Emulsion stability, viscosity and sum of water droplets surface area increased and water droplet size decreased with an increase in sonication time, and they approached each limiting value in the longer time. The maximum values of the viscosity and water surface area increased with water content, while the limiting values of the emulsion stability and water droplet size were almost independent of water content. During ultrasonication of water/diesel oil mixture, the hydrogen and methane were identified and the cracking of hydrocarbon components in the diesel oil occurred. The combustion characteristics of ultrasonically-prepared emulsion fuel were studied and compared with those of diesel oil. The soot and NOx emissions during combustion of the emulsified fuel with higher water contents were significantly reduced compared with those during combustion of diesel oil.  相似文献   

5.
In this study, microcapsules were prepared by spray drying and embedding hemp seed oil (HSO) with soy protein isolate (SPI) and maltodextrin (MD) as wall materials. The effect of ultrasonic power on the microstructure and characteristics of the composite emulsion and microcapsules was studied. Studies have shown that ultrasonic power has a significant impact on the stability of composite emulsions. The particle size of the composite emulsion after 450 W ultrasonic treatment was significantly lower than the particle size of the emulsion without the ultrasonic treatment. Through fluorescence microscopy observation, HSO was found to be successfully embedded in the wall materials to form an oil/water (O/W) composite emulsion. The spray-dried microcapsules showed a smooth spherical structure through scanning electron microscopy (SEM), and the particle size was 10.7 μm at 450 W. Fourier transform infrared (FTIR) spectroscopy analysis found that ultrasonic treatment would increase the degree of covalent bonding of the SPI-MD complex to a certain extent, thereby improving the stability and embedding effect of the microcapsules. Finally, oxidation kinetics models of HSO and HSO microcapsules were constructed and verified. The zero-order model of HSO microcapsules was found to have a higher degree of fit; after verification, the model can better reflect the quality changes of HSO microcapsules during storage.  相似文献   

6.
徐文婷  李洁  刘一杨  陈强  易勇  刘梅芳 《强激光与粒子束》2022,34(5):052002-1-052002-8
激光惯性约束聚变(ICF)作为探索受控核聚变的有效途径,有望获得清洁无污染的能源,而薄壁聚苯乙烯(PS)空心微球是ICF物理实验中亟需的一类微球。针对薄壁空心微球因径厚比(直径/壁厚)增大导致其在干燥、使用中易开裂的问题,研究了PS原料对薄壁微球质量的影响,探讨了其影响机制。结果表明:当油相PS质量分数为4%时,随着油相粘度增加,W1/O/W2复合乳粒稳定性逐渐提高;当油相质量分数不低于8%时,复合乳粒稳定性良好。PS原料对微球表面粗糙度影响较小,微球球形度和壁厚均匀性随初始油相粘度的增大而降低,在干燥过程中微球开裂率随原料力学性能提高而减小。在外水相中引入氟苯(FB)液滴,延缓固化速率,可减小油相粘度增加对微球球形度和壁厚均匀性的不利影响。  相似文献   

7.
This study demonstrated the influences of ultrasound-assisted multilayer Pickering double emulsion capsules on the pasteurization and gastrointestinal digestive viability of probiotic (L. plantarum) strain liquid. Firstly, the role of ultrasonic homogenization on the morphology of W1/O/W2 double emulsions were studied. The double emulsion formed by ultrasonic intensity at 285 W had a single and narrow distribution with smallest droplet size. The double emulsion particles were then coated with chitosan(Chi), alginate (Alg), and CaCl2(Ca). The multilayer emulsion after pasteurization and gastrointestinal digestion both had the highest viability at 5 coating layers, but its particle size (108.65 μm) exceeded the limit of human oral sensory (80 μm). It could be noted that the deposition of 3–4 layers of coating had similar activity after pasteurization/GIT digestion. And droplets with 3 layers of coating were the minimum and most available formulation for encapsulated probiotics (L. plantarum). Hence, the results suggest that the use of ultrasound-assisted multilayer emulsions encapsulated with probiotics in granular food and pharmaceutical applications is a promising strategy.  相似文献   

8.
O/W nanoemulsions are isotropic colloidal systems constituted of oil droplets dispersed in continuous aqueous media and stabilised by surfactant molecules. Nanoemulsions hold applications in more widespread technological domains, more crucially in the pharmaceutical industry. Innovative nanoemulsion-based drug delivery system has been suggested as a powerful alternative strategy through the useful means of encapsulating, protecting, and delivering the poorly water-soluble bioactive components. Consequently, there is a need to generate an emulsion with small and consistent droplets. Diverse studies acknowledged that ultrasonic cavitation is a feasible and energy-efficient method in making pharmaceutical-grade nanoemulsions. This method offers more notable improvements in terms of stability with a lower Ostwald ripening rate. Meanwhile, a microstructured reactor, for instance, microchannel, has further been realised as an innovative technology that facilitates combinatorial approaches with the acceleration of reaction, analysis, and measurement. The recent breakthrough that has been achieved is the controlled generation of fine and monodispersed multiple emulsions through microstructured reactors. The small inner dimensions of microchannel display properties such as short diffusion paths and high specific interfacial areas, which increase the mass and heat transfer rates. Hence, the combination of ultrasonic cavitation with microstructures (microchannel) provides process intensification of creating a smaller monodispersed nanoemulsion system. This investigation is vital as it will then facilitate the creation of new nanoemulsion based drug delivery system continuously. Following this, the fabrication of microchannel and setup of its combination with ultrasound was conducted in the generation of O/W nanoemulsion, as well as optimisation to analyse the effect of varied operating parameters on the mean droplet diameter and dispersity of the nanoemulsion generated, besides monitoring the stability of the nanoemulsion. Scanning transmission electron microscopy (STEM) images were also carried out for the droplet size measurements. In short, the outcomes of this study are encouraging, which necessitates further investigations to be carried out to advance a better understanding of coupling microchannel with ultrasound to produce pharmaceutical-grade nanoemulsions.  相似文献   

9.
Ultrasonic emulsification (USE) assisted by cavitation is an effective method to produce emulsion droplets. However, the role of gas bubbles in the USE process still remains unclear. Hence, in the present paper, high-speed camera observations of bubble evolution and emulsion droplets formation in oil and water were used to capture in real-time the emulsification process, while experiments with different gas concentrations were carried out to investigate the effect of gas bubbles on droplet size. The results show that at the interface of oil and water, gas bubbles with a radius larger than the resonance radius collapse and sink into the water phase, inducing (oil–water) blended liquid jets across bubbles to generate oil-in-water-in-oil (O/W/O) and water-in-oil (W/O) droplets in the oil phase and oil-in-water (O/W) droplets in the water phase, respectively. Gas bubbles with a radius smaller than the resonance radius at the interface always move towards the oil phase, accompanied with the generation of water droplets in the oil phase. In the oil phase, gas bubbles, which can attract bubbles nearby the interface, migrate to the interface of oil and water due to acoustic streaming, and generate numerous droplets. As for the gas bubbles in the water phase, those can break neighboring droplets into numerous finer ones during bubble oscillation. With the increase in gas content, more bubbles undergo chaotic oscillation, leading to smaller and more stable emulsion droplets, which explains the beneficial role of gas bubbles in USE. Violently oscillating microbubbles are, therefore, found to be the governing cavitation regime for emulsification process. These results provide new insights to the mechanisms of gas bubbles in oil–water emulsions, which may be useful towards the optimization of USE process in industry.  相似文献   

10.
This study investigated the effects of ultrasonic frequency, ultrasonic power, irradiation height and temperature on the drying characteristics, quality and microstructure of wolfberry by ultrasonic-assisted far-infrared drying. By fitting five commonly used thin-layer drying mathematical models, it was found that the coefficient of determination (R2) of the Weibull model was 0.99400–0.99825, the root mean square error (RMSE) was 1.2162 × 10-4–4.5209 × 10-4, and the reduced chi-square (χ2) was 0.00207–0.00663, which was the best fit. Under the application of ultrasound, the average drying rate of wolfberry increased. Compared with natural drying, the polysaccharide content increased by 33.2 % at 250 mm irradiation height, and the total phenol content increased by 44.9 % at 40 kHz ultrasonic frequency. The antioxidant activity was the strongest, and the total flavonoids content was the highest (2.594 mg/g) at 24 W ultrasonic power. By comparing the microstructure of wolfberry under different drying methods, such as a fresh sample, natural drying, hot air drying, and ultrasonic-assisted drying, we found that the ultrasonic assistance increased the number of micropores on the surface of wolfberry, reduced the damage to epidermal cells, reduced the mass transfer resistance of the drying process and accelerated the drying process. This study shows that ultrasonic-assisted far-infrared drying technology played a significant role in the heat and mass transfer of wolfberry drying, and had great potential in the commercial processing of wolfberry.  相似文献   

11.
This study presents an application of ultrasonic technology in the high voltage liquid insulation domain towards the reduction of pour point of vegetable oil samples for the utilization of vegetable oils as liquid insulation in cold climate areas on power transformers. Pour point reduction has been achieved by processing the vegetable oil samples by using ultrasonic treatment process with 100 W and 30 kHz ultrasonic waves for various exposure times of 15, 30, 45 and 60 min. Edible vegetable oils such as sunflower oil, palm oil, sesame oil and non edible vegetable oils such as honge oil, neem oil and punna oil are considered as two categories of vegetable oils for this experimental investigation. Ultrasonic treatment process results in the reduction of pour point of vegetable oils to meet out the standard value of pour point for liquid insulation as per IEEE Standard C57.147, 2018. A significant reduction in pour point temperature of vegetable oil samples have been obtained with an increased exposure time. The obtained variations in pour point after exposure with ultrasonic waves may be due to the possible changes in crystallization kinetics of fatty acids components of vegetable oil samples due to energy input of ultrasonic waves. The experimental results have given a way towards the positive encouragement and development with ultrasonic treatment for achieving low pour point vegetable oils as liquid insulation in power transformers for applications on cold climatic areas.  相似文献   

12.
This study analyzes the effects of ultrasonic waves on the drying kinetics of Tremella fuciformis during microwave vacuum drying. The physicochemical properties and structural characteristics of T. fuciformis polysaccharides (TFPs) were studied by drying tremella samples using hot air drying (HAD), microwave vacuum drying, ultrasonic pretreatments with microwave vacuum drying (US + MVD), and air-borne ultrasonic pretreatments combined with microwave vacuum drying (USMVD) under acoustic energy densities of 0.14, 0.28, and 0.42 W/mL. The results showed that USMVD and US + MVD accelerated the mass transfer process of T. fuciformis. Compared with HAD treatment, TFP samples obtained by USMVD and US + MVD had a reduced molecular weight to a certain extent, and they had stronger shear thinning ability. In addition, USMVD-TFPs at 0.42 W/mL retained higher total sugar, reducing sugar, and uronic acid, and the degree of reduction in the monosaccharide component content was small.  相似文献   

13.
Droplets banding is critical to emulsion separation under ultrasonic irradiation as it can greatly improve the separation efficiency. In this paper, the formation process of droplets banding under ultrasonic standing waves was precisely captured by high-speed microscopic photography; by processing the images, the droplets banding characteristics, including the banding formation time and banding interval, were extracted. Then the effects of acoustic intensity, frequency, droplet size, and physical properties of oil and water on the droplets banding characteristics were discussed in details. The results show that the range of acoustic intensities, within which the droplets banding can form, increases with the increase of the frequency; a maximum allowable acoustic intensity exists for banding formation, which also increases with the frequency. The banding formation time, which increases with increasing oil viscosity but decreases with droplet size, is found to be hardly affected by the oil-water interfacial tension. In addition, the banding interval is only related to the frequency, which closely corresponds to the half wavelength.  相似文献   

14.
This paper presents an exploration for separation of oil-in-water and coalescence of oil droplets in ultrasound field via lattice Boltzmann method. Simulations were conducted by the ultrasound traveling and standing waves to enhance oil separation and trap oil droplets. The focus was to the effect of ultrasound irradiation on oil-in-water emulsion properties in the standing wave field, such as oil drop radius, morphology and growth kinetics of phase separation. Ultrasound fields were applied to irradiate the oil-in-water emulsion for getting flocculation of the oil droplets in 420 kHz case, and larger dispersed oil droplets and continuous phases in 2 MHz and 10 MHz cases, respectively. The separated phases started to rise along the direction of sound propagation after several periods. The rising rate of the flocks was significantly greater in ultrasound case than that of oil droplets in the original emulsion, indicating that ultrasound irradiation caused a rapid increase of oil droplet quantity in the progress of the separation. The separation degree was also significantly improved with increasing frequency or irradiation time. The dataset was rearranged for growth kinetics of ultrasonic phase separation in a plot by spherically averaged structure factor and the ratio of oil and emulsion phases. The analyses recovered the two different temporal regimes: the spinodal decomposition and domain growth stages, which further quantified the morphology results. These numerical results provide guidance for setting the optimum condition for the separation of oil-in-water emulsion in the ultrasound field.  相似文献   

15.
There is a growing demand for eco-friendly/non-toxic colorants, specifically for health sensitive applications such as coloration of food and dyeing of child textile/leather garments. Recently, dyes derived from natural sources for these applications have emerged as an important alternative to potentially harmful synthetic dyes and pose need for suitable effective extraction methodologies. The present paper focus on the influence of process parameters for ultrasound assisted leaching of coloring matter from plant materials. In the present work, extraction of natural dye from beetroot using ultrasound has been studied and compared with static/magnetic stirring as a control process at 45 °C. The influence of process parameters on the extraction efficiency such as ultrasonic output power, time, pulse mode, effect of solvent system and amount of beetroot has been studied. The use of ultrasound is found to have significant improvement in the extraction efficiency of colorant obtained from beetroot. Based on the experiments it has been found that a mixture of 1:1 ethanol–water with 80 W ultrasonic power for 3 h contact time provided better yield and extraction efficiency. Pulse mode operation may be useful in reducing electrical energy consumption in the extraction process. The effect of the amount of beetroot used in relation to extraction efficiency has also been studied. Two-stage extraction has been studied and found to be beneficial for improving the yield for higher amounts of beetroot. Significant 8% enhancement in % yield of colorant has been achieved with ultrasound, 80 W as compared to MS process both using 1:1 ethanol–water. The coloring ability of extracted beet dye has been tested on substrates such as leather and paper and found to be suitable for dyeing. Ultrasound is also found to be beneficial in natural dyeing of leather with improved rate of exhaustion. Both the dyed substrates have better color values for ultrasonic beet extract as inferred from reflectance measurement. Therefore, the present study clearly offers efficient extraction methodology from natural dye resources such as beetroot with ultrasound even dispensing with external heating. Thereby, also making eco-friendly non-toxic dyeing of fibrous substances a potential viable option.  相似文献   

16.
Water in oil emulsions are prepared by using an ultra-sonication device and used in an emulsion liquid membrane process in order to recover arsenic (V) ions from an aqueous medium. The aim of this work is the investigation of the effect of emulsifier concentration and composition, and also sonication time on the emulsion droplet size and the extraction efficiency in order to obtain stable emulsions with small droplets that favor the extraction. Results show that ultrasonic waves reduce internal droplet size which enhances the extraction of arsenic. In addition, internal droplet size is decreased initially and then increased by increasing Span 80 concentration. On the other hand, by increasing Span 80 concentration, extraction amount is increased and then decreased. Furthermore, emulsifier blends provide more stability for the emulsion. Increasing concentration of Tween 20 as a hydrophilic emulsifier up to an optimum concentration decreases internal droplet size and increases extraction amount. By increasing sonication time up to 4 min, the internal droplet size is decreased and the extraction amount is increased. If sonication time is increased further, the internal droplet size is increased and the extraction amount is decreased.  相似文献   

17.
Coalescence of water droplets in crude oil has been effectively promoted by chemical demulsifiers integrated with ultrasound. Temporary images of water droplets in W/O emulsions were directly monitored using a metallurgical microscope. Water droplets achieved expansion of 118% at 40 min ultrasonic irradiation time under well mixing conditions. However, water droplets in heavy crude oil undergo less aggregation than those in light crude oil, due to resistance of mobility in highly viscous fluid. In the absence of chemical demulsifiers, water droplets enveloped by native surfactants appeared to aggregate arduously because of occurrence of interfacial tension gradients. Influential significance analyses have been executed by a factorial design method on operation variables, including acoustic power intensity, operation temperature, ultrasonic irradiation time and chemical demulsifier dosages. In this work, the outcomes indicate that the optimal operating conditions for desalination of crude oil assisted by ultrasound were as follows: acoustic power intensity = 300 W, operation temperature = 90℃, ultrasonic irradiation time = 75 min and chemical demulsifier dosages = 54 mg/L. Besides, it was found that the most influential importance of operation parameter was temperature, followed with acoustic power intensity, ultrasonic irradiation time and chemical demulsifier dosages.  相似文献   

18.
The ultrasonic formation of stable emulsions of a bioactive material, black seed oil, in skim milk was investigated. The incorporation of 7% of black seed oil in pasteurised homogenized skim milk (PHSM) using 20 kHz high intensity ultrasound was successfully achieved. The effect of sonication time and acoustic power on the emulsion stability was studied. A minimum process time of 8 min at an applied acoustic power of 100 W was sufficient to produce emulsion droplets stable for at least 8 days upon storage at 4 ± 2 °C, which was confirmed through creaming stability, particle size, rheology and color analysis. Partially denatured whey proteins may provide stability to the emulsion droplets and in addition to the cavitation effects of ultrasound are responsible for the production of smaller sized emulsion droplets.  相似文献   

19.
An ultrasonic microreactor with rough microchannels is presented in this study for oil-in-water (O/W) emulsion generation. Previous accounts have shown that surface pits or imperfections localize and enhance cavitation activity. In this study cavitation bubbles are localized on the rough microchannels of a borosilicate glass microreactor. The cavitation bubbles in the microchannel are primarily responsible for emulsification in the ultrasonic microreactor. We investigate the emulsification mechanism in the rough microchannels employing high-speed imaging to reveal the different emulsification modes influenced by the size and oscillation intensity of the cavitation bubbles. The effect of emulsification modes on the O/W emulsion droplet size distribution for different surface roughness and frequency is demonstrated. The positive effect of the frequency on minimizing the droplet size utilizing a reactor with large pits is presented. We also demonstrate microreactor systems for a successful generation of miniemulsions with high dispersed phase volume fractions up to 20%. The observed emulsification mechanism in the rough microchannel offers new insights into the utility and scale-up of ultrasonic microreactors for emulsification.  相似文献   

20.
A popular method for generating micron-sized aerosols is to submerge ultrasonic (ω~MHz) piezoelectric oscillators in a water bath. The submerged oscillator atomizes the fluid, creating droplets with radii proportional to the wavelength of the standing wave at the fluid surface. Classical theory for the Faraday instability predicts a parametric instability driving a capillary wave at the subharmonic (ω/2) frequency. For many applications it is desirable to reduce the size of the droplets; however, using higher frequency oscillators becomes impractical beyond a few MHz. Observations are presented that demonstrate that smaller droplets may also be created by increasing the driving amplitude of the oscillator, and that this effect becomes more pronounced for large driving frequencies. It is shown that these observations are consistent with a transition from droplets associated with subharmonic (ω/2) capillary waves to harmonic (ω) capillary waves induced by larger driving frequencies and amplitudes, as predicted by a stability analysis of the capillary waves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号