首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lung surfactant is a complex mixture of lipids and proteins which plays a major role in the respiratory cycle. This makes necessary to understand the effects of different external factors or agents, for example, inhaled particles, as a potential source of alteration of the normal physiological response of lung surfactant. However, in most cases, in vivo studies are difficult to perform, and preliminary studies based in model systems are required. Films of lipids or mixtures of lipids and proteins at the water–vapor interface are accounted as one of the most useful methodologies for initial assessments of the potential toxicity of inhaled particles. Thus, the study of the modifications induced by the incorporation of colloidal particles in the interfacial properties of layers mimicking some of the physicochemical features of lung surfactant might provide a first evaluation of the risks and hazards associated with the inhalation of particulate matter. Considering the importance of particles in technology and industry, it is mandatory to develop strategies providing information about toxicological aspects of these widespread materials. This review focuses its interest on the recent advancements on the application of studied bases on monolayers at the fluid interface as preliminary assay for deepening on a complex situation with biological interest.  相似文献   

2.
Monolayer films of hexagonal close-packed polystyrene (PS) spheres were formed at the air-water interface through a self-ordering process without using Langmuir trough. The contact angle of PS particles on the surface of water was determined by an interfacial swelling method. It was found that the concentration and the nature of surfactant had an obvious influence on the arrangement of PS particles. PS suspension containing Triton X 100 (TX 100) of an appropriate concentration self-assembled into a closely packed monolayer on the surface of water. Sodium dodecyl sulfonate, an anionic surfactant, had a relative weak influence on the arrangement of pre-dried PS particles, in contrast, had an obvious effect on newly synthesized PS particles. Quantitative ultraviolet-visible (UV-vis) absorption spectrometry indicated that about 3% of the added TX 100 was adsorbed on the PS particle surface. Laser diffraction patterns on the monolayer film were used to investigate the lattice orientation. Ultraviolet-visible-near infrared (UV-vis-NIR) spectra of monolayer films of different sized PS particles displayed that the method presented here was universal for preparation of two-dimensional (2D) colloidal crystals.  相似文献   

3.
The interfacial structure and properties of immiscible deuterated polystyrene (dPS)/epoxy bilayer films were investigated with neutron reflectivity as functions of the composition of the epoxy layer, the thickness of the dPS layer, and the annealing time. We have found that the interfacial width and its growth rate depend strongly on the compositions of the epoxy layer but only weakly on the thickness of the dPS layer. The effect of the resin/crosslinker composition on the interfacial width and its growth rate is likely due to the different near‐surface structures that result for different epoxy stoichiometries. For an ultra‐thin dPS film (thickness = 2Rg), the data suggest a slight suppression of the growth of the interfacial width that could be due to confinement effects for the long‐chain molecules such as have been previously reported for a thickness of less than approximately 4Rg, where Rg is the radius of gyration of polymer molecules. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2653–2660, 2002  相似文献   

4.
Monodisperse size colloidal particles varying in chemical composition were synthesized by emulsifier‐free emulsion polymerization. Using a stress‐controlled rheometer, the rheological behavior of colloidal suspensions in a low molecular weight liquid polysulfide was investigated. All suspensions exhibited shear thinning behavior. The shear viscosity, dynamic moduli, and yield stress increased as interactions between particles and matrix increased. The rheological properties associated with network buildup in the suspensions were sensitively monitored by a kinetic recovery experiment. We propose that interfacial interactions by polar and hydrogen bonding between particles and matrix strongly promote affinity of matrix polymer to the filler particles, resulting in adsorption or entanglement of polymer chains on the filler surface. A network structure was formed consisting of particles with an immobilized polymer layer on the particle surface with each particle floc acting as a temporary physical crosslinking site. As the interfacial interaction increases, the adsorbed layer thickness on the filler particles, hence, the effective particle volume fraction, increases. As a result, the rheological properties were enhanced in the order PS < PMMA < PSVP. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 815–824, 1999  相似文献   

5.
陈勇 《高分子科学》2010,28(6):895-902
<正>A generic method was described to change surface biocompatibihty by introducing reactive functional groups onto surfaces of polymeric substrates and covalently binding them with biomolecules.A block copolymer with protected carboxylic acid functionality,poly(styrene-b-tert-butyl acrylate)(PS-PtBA),was spin coated from solutions in toluene on a bioinert polystyrene(PS) substrate to form a bilayer structure:a surface layer of the poly(tert-butyl acrylate)(PtBA) blocks that order at the air-polymer interface and a bottom layer of the PS blocks that entangle with the PS substrate.The thickness of the PtBA layer and the area density of tert-butyl ester groups of PtBA increased linearly with the concentration of the spin coating solution until a 2 nm saturated monolayer coverage of PtBA was achieved at the concentration of 0.4%W/W.The protected carboxylic acid groups were generated by exposing the tert-butyl ester groups of PtBA to trifluoroacetic acid (TFA) for bioconjugation with FMRF peptides via amide bonds.The yield of the bioconjugation reaction for the saturated surface was calculated to be 37.1%based on X-ray photoelectron spectroscopy(XPS) measurements.The success of each functionalization step was demonstrated and characterized by XPS and contact angle measurements.This polymer functionalization/modification concept can be virtually applied to any polymeric substrate by choosing appropriate functional block copolymers and biomolecules to attain novel biocompatibility.  相似文献   

6.
This study compares the stability of various polymeric thin films supported on SiO(x)/Si substrate. Dewetting behaviors of polystyrenes (PS), polychloromethylstyrenes, and random poly(styrene-co-chloromethylstyrene)s are investigated by utilizing atomic force microscopy. A systematic addition of the chloromethylstyrene (ClMS) unit into PS chain causes the increase of segment polarity, affecting interfacial and interchain interactions in thin films. It is found that stability of the polymeric films depends on two major parameters, ratio of the ClMS unit and film thickness. For approximately 5 nm thick film, the addition of only 5 mol% ClMS unit causes a drastic increase of its stability, attributed to the enhanced interfacial interactions between ClMS group and SiO(x) layer. Further increasing the ClMS mole ratio to 20, 45, and 100% is accompanied by a systematic increase of the film stability. Thicker films (thicknesses approximately 22 and approximately 45 nm) of the copolymer with 5 mol% ClMS unit exhibit rather different behavior. They are found to be less stable compared to the PS films. However, the films of copolymers with ClMS unit of 20, 45, and 100% are still much more stable than the PS films. These dewetting behaviors of the copolymers are correlated to the interfacial interactions, interchain interactions and segmental segregation in thin films.  相似文献   

7.
In this study, a novel approach is demonstrated to fabricate hierarchically structured cadmium selenide (CdSe) layers with size-tunable nano/microporous morphologies achieved using polystyrene (PS) bilayered templates (top layer: colloidal template) via potentiostatic electrochemical deposition. The PS bilayer template is made in two steps. First, various PS patterns (stripes, ellipsoids, and circles) are prepared as the bottom layers through imprint lithography. In a second step, a top template is deposited that consists of a self-assembled layer of colloidal 2D packed PS particles. Electrochemical growth of CdSe crystals in the voids and selective removal of the PS bilayered templates give rise to hierarchically patterned 2D hexagonal porous CdSe structures. This simple and facile technique provides various unconventional porous CdSe films, arising from the effect of the PS bottom templates.  相似文献   

8.
Glass transition characteristics and mechanical wave attenuation of the neat and filled styrene‐butadiene rubber (SBR) containing 10 wt % of rigid monosize polystyrene particles of various diameters from several hundred microns down to several tens of nanometers were investigated by dynamic mechanical thermal analysis, impedance tube, and ultrasonic spectroscopy. The results showed the matrix damping capacity and the breadth of glass transition increase by reducing the size of rigid particles due to the matrix‐particles interfacial area increase as the major governing parameter. Matrix glass transition broadening toward higher temperatures was attributed to the increased dynamic heterogeneity induced by fillers, whereas the damping capacity increase was assigned to contribution of interfacial friction loss mechanism. The proposed postulation was confirmed based on the calculated temperature distribution of the relaxing matrix volume fraction. Sound wave attenuation by the matrix and PS particles filled systems led to a broad absorption peak for the former and appearance of a secondary absorption peak at lower frequencies for the latter. Intensity of this secondary peak was highest for the system containing PS nanoparticles. Finally, ultrasonic attenuation enhanced by the PS particle size to wavelength ratio increase according to αsca ~ (d/λ)0.38 scaling law and declined by replacing the dense particles with larger hollow PS particles. Comparison of the normalized attenuation of the PS particle filled SBR in various mechanical wave attenuation regimes implied low sensitivity to particle size in vibration, mild differentiation in the sound, and finally severe differentiation in the ultrasound regimes. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 82–88, 2010  相似文献   

9.
Oil-in-water (o/w) emulsions of styrene, as monomer oil in water, were achieved successfully via Pickering emulsification with laponite nanoparticles as the sole inorganic stabilizers. The formed emulsions showed excellent stability not only against droplets coalescence (before polymerization) but also against microparticles coagulation (after polymerization). Generally, the number of composite polystyrene microparticles (PS) increased and their sizes decreased with the content of solid nanoparticles used in stabilizing the precursor o/w emulsions. This is consistent with the formation of rigid layer(s) of the inorganic nanoparticles around the PS microparticles thus a better stability was achieved. The composite microparticles were characterized using various techniques such as surface charge, stability, transmission electron microscope (TEM), scanning electron microscope (SEM) and Fourier transform infra-red (FT-IR). Coating films of the prepared latexes were applied to flat glass surfaces and showed reasonable adhesion compared to PS latex particles prepared with conventional surfactants. The effect of employed conditions on the features of the resulting emulsions in terms of stability and particle size has been discussed.  相似文献   

10.
Micrometer-sized, monodisperse, “hamburger-like” polystyrene (PS)/poly(2-ethylhexyl methacrylate)/decane composite particles were obtained by seeded dispersion polymerization of 2-ethylhexyl methacrylate with PS seed particles in the presence of decane. The morphological stability of the hamburger-like particles was investigated based on thermodynamic and kinetic aspects. The hamburger-like morphology was maintained at 60 °C (above glass transition temperature (T g)) for at least 1 week in spite of less thermodynamic stability than hemispherical morphology. T g of the particles gradually increased throughout the polymerization due to monomer consumption. Geometric calculation result indicates that the degree of reduction of the interfacial free energy at the early stage of the morphological development is significantly low. From these results, it is concluded the morphological stability of the hamburger-like particles is considerably high because the development from hamburger-like to hemispherical morphologies is retarded by the gradual increase in viscosity inside the particles and the significantly lower interfacial free energy reduction.  相似文献   

11.
The low vapor pressure solvent 1‐chloropentane was used to directly spincast polystyrene (PS) films onto poly(methyl methacrylate) (PMMA) with smooth surfaces and sharp interfaces. Interface roughness after removal of the PS layer with cyclohexane was determined with scanning force microscopy to be <1 nm. Dynamic secondary mass spectroscopy revealed an interfacial width below the resolution limit of ~10 nm. Large area bilayers with smooth surfaces could be created. In addition, direct spincasting with 1‐chloropentane allows the production of thin PS films (<15 nm) and films of low molecular weight (<5 kDa) PS, all of which would be impossible to produce for this important model system by the traditional water‐transfer method. 1‐chloropentane was confirmed to be a sufficiently selective solvent for PS by measuring the Flory–Huggins χ parameters of 1‐chloropentane with PS and PMMA, respectively, with inverse gas chromatography. In the search for a suitable selective solvent, the authors have also examined the role of vapor pressure in spin casting smooth films over a wider molecular weight (4.3–190 kDa) and thickness range (~5–500 nm) than previously reported. Only solvents with low vapor pressure produced high quality PS films. Methylcyclohexene can also be used to produce excellent, directly cast PS/PMMA bilayers, but with a smaller molecular weight and thickness window compared with 1‐chloropentane. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3234–3244, 2006  相似文献   

12.
The synthesis of graphene oxide (GO)–polystyrene (PS) Pickering emulsions, as environment‐friendly nanostructures suitable for novel applications, has received significant attention in recent years. In this work, the synthesis and characterization of GO–PS nanocomposites through seeded emulsion polymerization and the selective light reflection properties of dry films have been reported. Amphiphilic molecule sulfonated 3‐pentadecyl phenol was used as a co‐surfactant to stabilize GO dispersions during the emulsion polymerization process. The particle size of the dispersions as measured by dynamic light scattering decreases from 540 nm, for PS without any GO, to 88 nm with 1 wt% GO content. Scanning electron microscopy studies show a uniform size distribution of the composite particles prepared with GO. The dried films show a structural color that varies with the GO content. The self‐assembly behavior of the dried film was further studied using reflectance spectroscopy, which shows a red shift of the reflectance maximum from 440 to 538 nm as the GO loading was increased from 0.2 to 0.5 wt%, respectively, indicating a different microstructure. X‐ray diffraction, transmission electron microscopy (TEM) and atomic force microscopy (AFM) were used to study the morphology and structure of the composite particles on drying. The AFM study confirms the non‐spherical shape of the particles. Thermogravimetric analysis shows improved thermal decomposition characteristics of the nanocomposite films. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
The stability of ultrathin polymer films plays a crucial role in their technological applications. Here, we systematically investigated the influence of interfacial adsorption in physical aging and the stability of thin polymer films in the solvent-induced process. We further identify the stability mechanism from the theory of thin film stability. Our results show that the aging temperature and film thickness can strongly influence the stability of thin PS films in acetone vapor. Physical aging can greatly improve the stability of thin polymer films when the aging temperature T_(aging1)T_g. A thinner PS film more quickly reaches a stable state via physical aging. At short aging time, the formation of the adsorbed layer can reduce the polar interaction; however, it slightly influences the stability of thin polymer films in the solvent-induced process. At later aging stage,the conformational rearrangement of the polymer chains induced by the interfacial effect at the aging temperature T_(aging1) plays an important role in stabilizing the thin polymer films. However, at T_(aging2)T_g, the process of physical aging slightly influences the stability of the thin polymer films.The formation of the adsorbed layer at T_(aging2) can reduce the short-range polar interaction of the thin film system and cannot suppress the instability of thin polymer films in the solvent-induced process. These results provide further insight into the stable mechanism of thin polymer films in the solvent-induced process.  相似文献   

14.
Understanding the air-water and oil-water interfacial behavior of plant proteins is crucial for developing stable emulsions and foams in food systems. Plant crops are often processed into protein extracts with high purity, which primarily consist of globulins. These globulins are often unable to form stiff interfacial layers owing to their compact and highly aggregated state and have inferior functionality compared with animal-derived proteins from milk or eggs. Much of the current focus is on modifying these proteins, whereas better interface stabilizing functionality can also be obtained by choosing more targeted protein extraction methods. This review will highlight the benefits and drawbacks of current and novel protein sources and protein extraction methods with respect to interfacial properties.  相似文献   

15.
Chitosan (CH) decorated polystyrene (PS) particles were synthesized within complexes of CH, a polycation under acid conditions, and tiny amounts of sodium dodecylsulfate (SDS). Particle characterization was performed by means of dynamic light scattering, zeta potential measurements, and transmission electron microscopy. All dispersions were stable in the ionic strength of 2.0 mol L-1 NaCl during 2 months. The outstanding colloidal stability was attributed to the presence of a hydrated CH layer around the particles. CH decorated PS particles were attached to atomic force microscopy cantilevers and probed against Si wafers in water and in NaCl 0.01 mol/L. The mean thickness of CH layer amounted to 35 +/- 11 and 16 +/- 6 nm, when the medium was water and NaCl 0.01 mol/L, respectively. Adsorption isotherm of hexokinase (HK) onto PS/CH particles studied by means of spectrophotometry showed three regions: an initial step; adsorption plateau and multilayer formation. Enzymatic activity of free HK and immobilized HK was monitored by means of spectrophotometry as a function of storing time and reuse. After 3 days, storing HK free in solution dramatically lost its catalytic properties. On the contrary, HK-covered PS/CH particles retained enzymatic activity over 1 month. Moreover, HK-covered PS/CH particles could be reused in the determination of glucose two times consecutively, without losing activity. These interesting findings were discussed in light of the role of water in enzyme conformation.  相似文献   

16.
Polystyrene (PS) bilayers were prepared and were adhered at a temperature between the surface and bulk glass-transition temperatures for a given time. Then, the interfacial adhesion strength (GL) was examined with a conventional lap-shear measurement. GL first increased with increasing adhesion time and then reached a constant value. This result implied that the segments moved across the interface, to a certain depth, even at a temperature below the bulk glass-transition temperature. To confirm this, the interfacial evolution for the PS/deuterated PS bilayers was examined with dynamic secondary-ion mass spectrometry. The GL value was linearly proportional to the thickness of the interfacial adhesion layer. Finally, we propose a strategy for regulating the adhesion strength based on the chain-end chemistry. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3598–3604, 2006  相似文献   

17.
This paper summarizes a study on emulsifier‐free ultrasonically assisted in situ dynamic interfacial emulsion copolymerization process of acrylamide and styrene. The resulting emulsions are stable and uniform for several months. Thermogravimetric analysis (TGA) curves and reaction conversion measurements have provided an important knowledge regarding the emulsifier‐free polymerization method. Solvent extractions (water, methanol, and xylene) have shown that the polymerization product is essentially a styrene–acrylamide copolymer. The copolymer produced is a block copolymer, PS‐b‐PAM, where each block contains small amounts of the other comonomer. The produced emulsions are film forming at room temperature in spite of the very high block Tgs, owing to a unique water plasticization effect of the polyacrylamide blocks. Some films prepared from the PS‐b‐PAM have resulted in clear and transparent films. The presented interfacial dynamic polymerization process is fast, reaching 81% conversion within 2 hr of sonication at 4°C (low temperature owing to molecular weight and kinetic considerations), and produces very stable PS‐b‐PAM emulsions. TGA was extensively used as an analytical tool for determination of the reaction parameters and composition of the acrylamide–styrene copolymers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
We investigated the response of symmetric poly(styrene-block-4vinylpyridine) P(S-b-4VP) diblock copolymer micelles to surface fields of variable strength at free surfaces and substrate interfaces when the micelles as spun were subjected to solvent annealing. Free surface interactions were controlled with solvent annealing in solvents of varied selectivity. On exposure to vapors of a solvent strongly selective for PS, the micelles retained their spherical shape but grew into cylindrical micelles or lamellar nanostructures via fusion on exposure to slightly selective or neutral solvent vapors. Giant 2D disks that completely wetted PS-grafted substrates resulted when spherical micelles were exposed to vapors of a highly selective solvent for P4VP. The interfacial interactions were controlled through subjecting them to UV/ozone (UVO) substrates initially coated with an end-grafted layer of short PS chains, with which the grafted PS chains became oxidized, degraded, or totally removed through UVO treatment for a controlled duration. When thin films were annealed in vapors of THF, the structural transition from spherical to cylindrical micelles depended on the interfacial field. On applying selective UVO exposure of optimal duration, we fabricated a substrate with two interfacial chemistries that promoted varied micellar species (spherical and cylindrical micelles) with a sharp boundary developed within thin films through solvent annealing for a controlled duration.  相似文献   

19.
Cadmium sulfide/polystyrene (CdS/PS) hybrid particles were synthesized and their physical characteristics including electrorheology were examined. Monodisperse CdS/PS nanocomposite particles with diameters of 2 μm were obtained via dispersion polymerization. To form cadmium sulfide nanoparticles onto the PS surface, 2-(dimethylamino)ethyl methacrylate was used as a functional monomer for coordinating with Cd2+ ions. Finally, cadmium sulfide nanoparticles with size < 10 nm were formed with the release of S2− ions from thioacetamide. The morphology of the as-prepared CdS/PS nanocomposite particles clearly showed that the CdS particles are present on the surface of the PS. The optical properties were also studied. In addition, their electrorheological characteristics were confirmed by using optical microscopy with applied electrical field. Recently, dielectric properties of CdS nanoparticles were already reported; however, electrorheological characteristics of CdS/PS nanocomposite particles were investigated for the first time.  相似文献   

20.
Sun H  Hu N 《The Analyst》2005,130(1):76-84
In this work, a novel two-step construction strategy for protein layer-by-layer assembly films was proposed. In the first step, positively charged hemoglobin (Hb) or myoglobin (Mb) at pH 5.0 was adsorbed on the negatively charged surface of 500 nm diameter-sized polystyrene (PS) latex beads, forming core-shell structured PS-protein particles. In the next step, the PS-protein particles were further assembled layer by layer with oppositely charged poly(styrene sulfonate)(PSS) on various solid surfaces under suitable conditions. Cyclic voltammetry (CV), quartz crystal microbalance (QCM), and UV-vis spectroscopy were used to monitor the growth of {(PS-protein)/PSS}(n) films. The stable {(PS-protein)/PSS}(n) films modified on pyrolytic graphite (PG) electrodes demonstrated good electroactivity in protein-free buffer, which was originated from protein heme Fe(III)/Fe(II) redox couples, and the electroactivity extended to six (PS-protein)/PSS bilayers. UV-vis spectroscopy showed that Hb and Mb in the films retained their near-native structure in the medium pH range. {(PS-protein)/PSS}(n) films catalyzed electrochemical reduction of oxygen, hydrogen peroxide, trichloroacetic acid (TCA) and nitrite with a significant lowering of overpotential, and displayed better catalytic activity than corresponding cast PS-protein films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号