首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
《印度化学会志》2021,98(9):100102
Malarial infection due to P. falciparum is prominent cause in worldwide fatality. PfCRT, PfDHPS, PfMDR1 and PfDHFR1 play vital role as targets in malarial infection. We chose PfCRT-specific ligands for our study and tested them against all P. falciparum targets. The study was carried out by performing MDS and MD analyses with the NAMD and AutoDock softwares, respectively. The study's goal is to find potential ligands that can act on all malarial targets at various temperatures.The MDS studies revealed structural conformational changes and protein stability from normal human body temperature, 98.6 ​°F, to maximum human body temperature, 107 ​°F. This MDS analysis of Plasmodium targets was carried out by creating a graph of RMSD vs time. Further MD analysis revealed that the ligands reported against PfCRT also had a high binding energy against PfDHPS and PfDHFR. As a result, those ligands can also be targeted for Plasmodium falciparum proteins other than the three mentioned above. These ligands can be subjected to SAR and QSAR studies in order to develop novel molecules for malaria treatment.  相似文献   

2.
Drugs SPD-304(6,7-dimethyl-3-{[methyl-(2-{methyl-[1-(3-trifluoromethyl-phenyl)-1H-indol-3-ylmethyl]- amino}-ethyl)-amino]-methyl}-chromen-4-one) and zafirlukast contain a common structural element of 3-substituted indole moiety which closely relates to a dehydrogenated reaction catalyzed by cytochrome P450s(CYPs). It was reported that the dehydrogenation can produce a reactive electrophilic intermediate which cause toxicities and inactivate CYPs. Drug L-745,870(3-{[4-(4-chlorophenyl)piperazin-1-yl]-methyl}-1H-pyrrolo- 2,3-β-pyridine) might have similar effect since it contains the same structural element. We used molecular docking approach combined with molecular dynamics(MD) simulation to model three-dimensional(3D) complex structures of SPD-304, zafirlukast and L-745,870 into CYP3A4, respectively. The results show that these three drugs can stably bind into the active site and the 3-methylene carbons of the drugs keep a reasonable reactive distance from the heme iron. The complex structure of SPD-304-CYP3A4 is in agreement with experimental data. For zafirlukast, the calculation results indicate that 3-methylene carbon might be the dehydrogenation reaction site. Docking model of L-745,870-CYP3A4 shows a potential possibility of L-745,870 dehydrogenated by CYP3A4 at 3-methylene carbon which is in agreement with experiment in vivo. In addition, residues in the phenylalanine cluster as well as S119 and R212 play a critical role in the ligands binding based on our calculations. The docking models could provide some clues to understand the metabolic mechanism of the drugs by CYP3A4.  相似文献   

3.
超临界水的分子动力学模拟   总被引:19,自引:0,他引:19  
周健  陆小华  王延儒  时钧 《物理化学学报》1999,15(11):1017-1022
采用分子动力学(MD)模拟的方法对超临界条件下水的结构及扩散性质进行了研究.模拟结果表明超临界条件下水分子之间的氢键作用明显减弱,分子极性大大降低.扩散性质与常温下相比,其大小约上升了两个数量级.  相似文献   

4.
Taxol is one of the most important anti-cancer drugs. The interaction between different variants of Taxol, by altering one of its chiral centers at a time, with β-tubulin protein has been investigated. To achieve such goal, docking and molecular dynamics (MD) simulation studies have been performed. In docking studies, the preferred conformers have been selected to further study by MD method based on the binding energies reported by the AutoDock program. The best result of docking study which shows the highest affinity between ligand and protein has been used as the starting point of the MD simulations. All of the complexes have shown acceptable stability during the simulation process, based on the RMSDs of the backbone of the protein structure. Finally, MM-GBSA calculations have been carried out to select the best ligand, considering the binding energy criteria. The results predict that two of the structures have better affinity toward the mentioned protein, in comparison with Taxol. Three of the structures have affinity similar to that of the Taxol toward the β-tubulin.  相似文献   

5.
    
The phytochemicals can play complementary medicine compared to synthetic drugs considering their natural origin, safety, and low cost. Phytochemicals hold a key position for the expansion of drug development against corona viruses and need better consideration to the agents that have already been shown to display effective activity against various strains of corona viruses. In this study, we performed molecular docking studies on potential forty seven phytochemicals which are SARS-CoV-1 Mpro inhibitors to identify potential candidate against the main proteins of SARS-CoV-2. In Silico Molecular docking studies revealed that phytochemicals 16 (Broussoflavan A), 22 (Dieckol), 31 (Hygromycin B), 45 (Sinigrin) and 46 (Theaflavin-3,3′-digallate) exhibited excellent SARS-CoV-2 Mpro inhibitors. Furthermore, supported by Molecular dynamics (MD) simulation analysis such as Root Mean Square Deviation (RMSD), Root Mean Square Fluctuation (RMSF), Radius of gyration (Rg) and H-bond interaction analysis. We expect that our findings will provide designing principles for new corona virus strains and establish important frameworks for the future development of antiviral drugs.  相似文献   

6.
    
Mutant isocitrate dehydrogenase 2 (mIDH2) is an emerging target for the treatment of cancer. AG-221 is the first mIDH2 inhibitor approved by the FDA for acute myeloid leukemia treatment, but its acquired resistance has recently been observed, necessitating the development of new inhibitor. In this study, a multi-step virtual screening protocol was employed for the analysis of a large database of compounds to identify potential mIDH2 inhibitors. To this end, we firstly utilized molecular dynamics (MD) simulations and binding free energy calculations to elucidate the key factors affecting ligand binding and drug resistance. Based on these findings, the receptor-ligand interaction-based pharmacophore (IBP) model and hierarchical docking-based virtual screening were sequentially carried out to assess 212,736 compounds from the Specs database. The resulting hits were finally ranked by PAINS filter and ADME prediction and the top compounds were obtained. Among them, six molecules were identified as mIDH2 putative inhibitors with high selectivity by interacting with the capping residue Asp312. Furthermore, subsequent docking and MD experiments demonstrated that compound V2 might have potential inhibitory activity against the AG-221-resistant mutants, thereby making it a promising lead for the development of novel mIDH2 inhibitors.  相似文献   

7.
    
In the current study, a simple in silico approach using free software was used with the experimental studies to optimize the antiproliferative activity and predict the potential mechanism of action of pyrrolizine-based Schiff bases. A compound library of 288 Schiff bases was designed based on compound 10, and a pharmacophore search was performed. Structural analysis of the top scoring hits and a docking study were used to select the best derivatives for the synthesis. Chemical synthesis and structural elucidation of compounds 16a–h were discussed. The antiproliferative activity of 16a–h was evaluated against three cancer (MCF7, A2780 and HT29, IC50 = 0.01–40.50 μM) and one normal MRC5 (IC50 = 1.27–24.06 μM) cell lines using the MTT assay. The results revealed the highest antiproliferative activity against MCF7 cells for 16g (IC50 = 0.01 μM) with an exceptionally high selectivity index of (SI = 578). Cell cycle analysis of MCF7 cells treated with compound 16g revealed a cell cycle arrest at the G2/M phase. In addition, compound 16g induced a dose-dependent increase in apoptotic events in MCF7 cells compared to the control. In silico target prediction of compound 16g showed six potential targets that could mediate these activities. Molecular docking analysis of compound 16g revealed high binding affinities toward COX-2, MAP P38α, EGFR, and CDK2. The results of the MD simulation revealed low RMSD values and high negative binding free energies for the two complexes formed between compound 16g with EGFR, and CDK2, while COX-2 was in the third order. These results highlighted a great potentiality for 16g to inhibit both CDK2 and EGFR. Taken together, the results mentioned above highlighted compound 16g as a potential anticancer agent.  相似文献   

8.
9.
    
《印度化学会志》2023,100(8):101052
  相似文献   

10.
11.
    
In this study, a combination of virtual screening methods were utilized to identify novel potential indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. A series of IDO1 potential inhibitors were identified by a combination of following steps: Lipinski's Rule of Five, Veber rules filter, molecular docking, HipHop pharmacophores, 3D-Quantitative structure activity relationship (3D-QSAR) studies and Pan-assay Interference Compounds (PAINS) filter. Three known categories of IDO1 inhibitors were used to constructed pharmacophores and 3D-QSAR models. Four point pharmacophores (RHDA) of IDO1 inhibitors were generated from the training set. The 3D-QSAR models were obtained using partial least squares (PLS) analyze based on the docking conformation alignment from the training set. The leave-one-out correlation (q2) and non-cross-validated correlation coefficient (r2pred) of the best CoMFA model were 0.601 and 0.546, and the ones from the best CoMSIA model were 0.506 and 0.541, respectively. Six hits from Specs database were identified and analyzed to confirm their binding modes and key interactions to the amino acid residues in the protein. This work may provide novel backbones for new generation of inhibitors of IDO1.  相似文献   

12.
Hepatitis B virus (HBV) is an enveloped hepatotropic virus responsible for nucleic acids replication. It causes chronic infection. Depending on the strain, mutations in the core protein of chronic hepatitis B virus (HBV) infections occur. Medicinal plants, the backbone of traditional medicine, are a potential source of lead molecules in drug discovery due to extensive pharmacological studies. In this study, we have screened twenty-nine phytochemicals. The ADME and drug-likeness of these phytochemicals were investigated. After screening, the binding affinity of ten phytochemicals was studied through molecular docking. Simulation studies were carried out for 100 ns to analyze the properties of RMSD, Rg, RMSF, average hydrogen bond number and SASA of hepatitis B virus capsid protein. As per the docking results phyllanthosterol, may be used as a potential inhibitors against HBV. The simulations findings revealed that, in case of mutant protein, the flexibility nature decreases as compared to wildtype protein. Our results may provide useful information for drug design and to lead the identification of novel inhibitor for hepatotropic viral infection.  相似文献   

13.
赵丽君  雷鸣 《化学进展》2014,26(1):193-202
甲状腺结合前清蛋白TTR是一种具有重要生理功能的蛋白质,它是约30种与淀粉样疾病相关的非同源蛋白中的一种。与TTR相关的淀粉样疾病主要有:家族淀粉化心肌疾病,家族淀粉化神经系统疾病,老年系统性淀粉样病变,以及中枢神经系统选择性淀粉化疾病等。这些疾病是由TTR四聚体解聚过程中错误折叠形成cross-β-sheet结构形态的淀粉样纤维所导致。本文介绍了TTR的生理功能及结构特征,并综述了到目前为止用分子动力学模拟、分子对接和定量构效关系等方法在研究TTR淀粉样机理及TTR和小分子相互作用过程中的计算化学研究成果,为基于TTR结构的TTR淀粉样抑制剂药物分子的设计和筛选提供有力参考。  相似文献   

14.
    
CB2 receptor belongs to the family of G-protein coupled receptors (GPCRs), which extensively controls a range of pointer transduction. CB2 plays an essential role in the immune system. It also associates in the pathology of different ailment conditions. In this scenario, the synthetic drugs are inducing side effects to the human beings after the drug use. Therefore, this study is seeking novel alternate drug molecules with least side effects than conventional drugs. The alternative drug molecules were chosen from the natural sources. These molecules were selected from cyanobacteria with the help of earlier research findings. The target and ligand molecules were obtained from recognized databases. The bioactive molecules are selected from various cyanobacterial species, which are selected by their biological and pharmacological properties, after, which we incorporated to the crucial findings such as homology modelling, molecular docking, MD simulations along with absorption, distribution, metabolism, and excretion (ADME) analysis. Initially, the homology modelling was performed to frame the target from unknown sequences of CB2, which revealed 44% of similarities and 66% of identities with the A2A receptor. Subsequently, the CB2 protein molecule has docked with already known and prepared bioactive molecules, agonists and antagonist complex. In the present study, the agonists (5) and antagonist (1) were also taken for comparing the results with natural molecules. At the end of the docking analysis, the cyanobacterial molecules and an antagonist TNC-201 are revealed better docking scores with well binding contacts than the agonists. Especially, the usneoidone shows better results than other cyanobacterial molecules, and it is very close docking scores with that of TCN-201. Therefore, the usneoidone has incorporated to MD simulation with Cannabinoid receptors 2 (CB2). In MD simulations, the complex (CB2 and usneoidone) reveals better stability in 30 ns. Based on the computational outcome, we concluded that usneoidone is an effectual and appropriate drug candidate for activating CB2 receptors and it will be serving as a better component for the complications of CB2. Moreover, these computational approaches can be motivated to discover novel drug candidates in the pharmacological and healthcare sectors.  相似文献   

15.
    
Xylotetraose is a prebiotic oligosaccharide can be utilized by the ABC transporter of the gut microbiota Bifidobacteria. BlAXBP is the solute binding protein of the ABC transporter, and its complex with xylotetraose has been solved by X-ray crystallography. Here, we have identified novel sugar mimic of BlAXBP by applying a high-throughput virtual screening of ZINC database containing a huge library with ∼22 M compounds. To begin with, we identified 18,571 ligands by a ligand-based virtual screening. Further, a total of 3968 compounds were selected for molecular docking due to their Tanimoto coefficient’s value were larger than a cutoff of 0.08. The molecular mechanics-generalized born surface area was used to evaluate the binding free energies, and the top 10 ligands with free energies below an energy threshold of -35.22 kcal/mol were selected. ZINC13783511 formed the most stable complex with BlAXBP and its recognition mechanism were further explored by microsecond MD simulations in explicit solvent. Free energy landscapes were used to evaluate conformational changes of BlAXBP in its ligand free and binding states. Collectively, this work identified potential novel sugar mimics to BlAXBP, providing novel atomic-level understanding of the binding mechanism.  相似文献   

16.
通过分子对接和动力学模拟的计算方法模拟人血清白蛋白(HSA)的三维空间结构,建立了HSA与全氟丙酸(IPC-PFFA-3)相互作用的模型,研究了HSA与全氟丙酸复合物在水溶液中的稳定性以及在结合位点中的动力学性质。在模拟人体生理的实验条件下,采用荧光光谱法和同步荧光光谱法研究了HSA与IPC-PFFA-3的相互作用。实验结果表明,IPC-PFFA-3与HSA形成的复合物HSA-IPC-PFFA-3对HSA产生荧光猝灭作用,其猝灭机理是静态猝灭;热力学参数计算得出两者结合的主要作用力为氢键作用力;竞争实验的结果表明IPC-PFFA-3与HSA的结合位点位于HSA的SiteⅡ,与分子对接的模拟结果相吻合。同步荧光光谱实验与动力学模拟的结果证明IPC-PFFA-3与HSA能够稳定结合,并使HSA的构象发生变化。  相似文献   

17.
    
Six phthalate acid esters(PAEs) priority pollutants[dimethyl phthalate(DMP), diethyl phthalate(DEP), dibutyl phthalate (DBP or DNBP), di-n-octyl phthalate(DNOP), di 2-ethyl hexyl phthalate(DEHP), and butyl benzyl phthalate(BBP)] were opted as the research object. PAE-degrading esterase CarEW(PDB ID:1C7I) isolated from Bacillus subtilis acting as a template and an iterative saturation mutation strategy was adopted to modify key amino acids to attain efficient PAE-degrading esterase substitutes with a reasonable structure constructed by homology modeling method. Present study designed a total of 285 unit-site and multi-site substitutions of PAE-degrading esterase using the homology modeling method. Among them, 207 PAE-degrading esterase substitutions, which contained the 6-site PAE-degrading esterase substitute 1C7I-6-9 with 84.21% enhancement intensity of degradation ability revealed better degradability to all the 6 PAEs after modification. Moreover, molecular dynamics simulation based on the Taguchi method reported the optimal external application environment for PAE-degrading esterase substitutes as follows:pH=6, T=35℃, the rhamnolipid concentration was 50 mg/L, the molar ratio of nitrogen to phosphorus(N:P) was 10:1, the concentration of H2O2 was 50 mg/L, and the voltage gradient was 1.5 V/cm. The degradation ability of PAE-degrading esterase substitutes was found to be elevated by 13.04% as compared to that of the blank control under the optimal condition. Moreover, 11 highly efficient PAE-degrading esterase substitutes with thermal stability were designed.  相似文献   

18.
    
The biological activities of harmine have been a much clearer picture in recent years, which include anti-tumor, anti-inflammation and cytotoxic properties. Numerous in vitro and in vivo animal models have confirmed its activities, but its mode of action remains a relative unsolved issue. We therefore investigated harmine for its effects on MMP-3 and the molecular interaction was also simulated. The human glioma cancer cell line, U-87 MG cells, was subjected to different concentrations (1–10 μM) of harmine for 24 h. Methylthiazol tetrazolium (MTT) test, half maximal inhibitory concentration (IC50), western blot analysis, enzyme-linked immunosorbent assay and molecular docking through BIOVIA DiscoveryStudio™ were performed. These results showed that although harmine stimulation in vitro has very little or no effects on MMP-3 expression by U-87 MG cells, the treatment of harmine decreases MMP-3 activity in a dose dependent manner. It was further calculated that 7.9 μM is the IC50 towards MMP-3. Using a molecular dynamic simulation approach, we identified the N2, methyl of C1 and benzene ring of harmine interact with Zn2+ (2.4 Å), His205 (2.4 Å) and His211 (2.4 Å) as well as Val163 (2.7 Å) at the active site of MMP-3, respectively, and thus conferred a striking specific binding advantage. Taken altogether, the present study evidences that harmine acts as an MMP-3 inhibitor specially targeting the enzymatic active site and possibly efficiently ameliorates MMP-3-driven malignant and inflammatory diseases.  相似文献   

19.
Four new manganese(III) Schiff base complexes (1–4) were synthesized and characterized. The complexes have general formula [MnClLx] in which L represents a Schiff base ligand derived from condensation of meso-1,2-diphenyl-1,2-ethylenediamine with salicylaldehyde or its 3-OMe-, 5-Br-, or 5-OMe-derivatives (x = 1–4, respectively). The crystal structure of [MnClL1] (1) was characterized by X-ray crystallography. The in vitro anticancer activity of these complexes was evaluated by MTT and apoptosis assays against human breast (MCF-7) and liver (Hep G2) cancer cells. The complexes exhibited considerable antiproliferative activity against both cell lines (IC50 = 10.8–21.02 μM) comparable to cis-platin, except 4 (MCF-7). The highest activity was found for 1 with IC50 values of 13.62 μM (MCF-7) and 10.8 μM (Hep G2). Flow cytometry experiments showed that 1 induced apoptosis on MCF-7 tumor cell line. Docking simulations using AUTODOCK were also carried out. The results showed that all complexes fitted into the minor groove region of DNA.  相似文献   

20.
We report a set of strategies to develop novel ligands (Structure Based and Experimental Selection of Fragments: SbE-SF). First, a docking simulation utilizing DOCK3.5 is performed in order to screen the fragment database, which was generated with the in-house program FRAGMENT++ specifically for docking simulation purposes. Although the affinity of these small molecules (fragments) is expected to be low, the affinity of fragments selected by computation is assayed by experiment to determine which ones can be potent inhibitors. After determining such key fragments, additional fragments are attached to the key ones in order to increase the binding affinity,taking into account the binding modes predicted by computation. This method has been applied to a thrombin inhibitor study, resulting in the discovery of a novel inhibitor exhibiting pIC50 = 7.9.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号