共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this study was to evaluate the effects of ultrasound-assisted saucing on the quality of chicken gizzards. The results showed that with the prolonging of the saucing time, the yield, water holding capacity (WHC), lightness (L*), redness (a*) and springiness of chicken gizzards significantly decreased, while the shear force, hardness and chewiness significantly increased (P < 0.05). When the saucing time was the same, the yield, WHC, springiness and tenderness of the ultrasound group were significantly higher than those of the non-ultrasound group (P < 0.05). In particular, when the saucing time was 30 min, the yield, WHC and springiness of the ultrasound group increased by 2.13%, 0.97% and 10.53%, and the shear force decreased by 21.22% compared with those of the non-ultrasound group, respectively. Besides, ultrasound pretreatment increased the content of aromatic compounds, short-chain alkanes, alcohols, aldehydes and ketones, and the principal component analysis displayed that C-50 (saucing for 50 min without ultrasound pretreatment) and U-30 (saucing for 30 min with ultrasound pretreatment) were similar in flavor. Therefore, ultrasound pretreatment is a potential way to improve the quality of saucing chicken gizzards and shorten the processing time. 相似文献
2.
3.
This study investigated the effect of ultrasound assisted chicken cartilage collagen peptide (CP) treatment on the storage quality of chicken breast meat. There were five meat groups at 4 °C for 60 min as follows: untreatment (Control), immersing in deionized water (DW), ultrasound treatment in DW (UDW), immersing in CP (0.15 g/100 mL) solution and immersing in ultrasound combined with CP (UCP). The results showed that the drip and cooking loss of meat decreased significantly in UCP at 4 and −18 °C with the extension of storage time. A large amount of non-flowing water transformed into free water in the 4 °C for 5 d, and the smallest degree of water migration was observed at −18 °C in UCP. The texture parameters of UCP group were significantly improved, especially for decreased hardness and increased elasticity. Furthermore, there had no significant effect on the color of chicken breast. 相似文献
4.
The effect of ultrasound assisted konjac glucomannan treatment on the properties of chicken plasma protein gelation was investigated in this study. There were four gelation groups as follows: untreated plasma protein gelation (Control), gelation added konjac glucomannan (KGG), gelation by ultrasound treatment alone (UG) and gelation added konjac glucomannan combined with ultrasound treatment (KGUG). The data showed that the gelation strength and water-holding capacity of the treated groups were significantly increased compared with those of Control. The strongest bonding water was present in KGUG, followed by KGG and UG in low-field nuclear magnetic resonance. The storage energy (G′) and loss energy modulus (G″) of KGUG showed the largest rheological properties, and the G′ value was higher than that of G″. Furthermore, the elastic and gelatinous properties of UG, KGG and KGUG played a dominant role in viscoelasticity. After konjac glucomannan addition, the particle size of KGG increased significantly. Compared with that of the Control and KGG, the average particle size of UG and KGUG decreased significantly after ultrasound treatment. The hydrophobicity and disulfide bonds mainly affected the formation of heat-induced gelation in these four groups. Furthermore, KGUG with the highest hydrophobicity and disulfide bonds revealed the best stability. Therefore, the gelation of chicken plasma protein by ultrasound assisted konjac glucomannan treatment had excellent gelling properties. 相似文献
5.
《Ultrasonics sonochemistry》2014,21(6):2138-2143
The delivery of a consistent quality product to the consumer is vitally important for the food industry. The aim of this study was to investigate the potential for using high frequency ultrasound applied to pre- and post-rigor beef muscle on the metabolism and subsequent quality. High frequency ultrasound (600 kHz at 48 kPa and 65 kPa acoustic pressure) applied to post-rigor beef striploin steaks resulted in no significant effect on the texture (peak force value) of cooked steaks as measured by a Tenderometer. There was no added benefit of ultrasound treatment above that of the normal ageing process after ageing of the steaks for 7 days at 4 °C. Ultrasound treatment of post-rigor beef steaks resulted in a darkening of fresh steaks but after ageing for 7 days at 4 °C, the ultrasound-treated steaks were similar in colour to that of the aged, untreated steaks. High frequency ultrasound (2 MHz at 48 kPa acoustic pressure) applied to pre-rigor beef neck muscle had no effect on the pH, but the calculated exhaustion factor suggested that there was some effect on metabolism and actin-myosin interaction. However, the resultant texture of cooked, ultrasound-treated muscle was lower in tenderness compared to the control sample. After ageing for 3 weeks at 0 °C, the ultrasound-treated samples had the same peak force value as the control. High frequency ultrasound had no significant effect on the colour parameters of pre-rigor beef neck muscle. This proof-of-concept study showed no effect of ultrasound on quality but did indicate that the application of high frequency ultrasound to pre-rigor beef muscle shows potential for modifying ATP turnover and further investigation is warranted. 相似文献
6.
In this study, batters formulated with different hydrocolloids (i.e., pectin, locust bean gum, xanthan gum, guar gum, hydroxypropyl methylcellulose and methylcellulose) were treated with ultrasound as edible coatings for fried chicken nuggets. Quality characteristics (i.e., batter pickup, flow behaviours, thermal properties, moisture loss, color and textural properties) in chicken nuggets coated with ultrasound treated batters were evaluated before and after post frying exposure to heat lamp. Ultrasonication significantly reduced batter pickup, flow behavior and gelatinization enthalpy, revealing its tendency to alter functional properties of batter systems. Rheological evaluation of all batter samples revealed a pseudoplastic (shear thinning) flow characteristic when fitted to power law model, with ultrasonicated (US) samples exhibiting a significant reduction in viscosity over non-ultrasonicated (NUS) samples. Compared to the control NUS, fat content of chicken nuggets coated with US-treated batters decreased by 39.0, 60.9, 62.87, 64.1, 65.7, and 65.0 % for pectin, locust bean gum, xanthan gum, guar gum, hydroxypropyl methylcellulose and methylcellulose, respectively. Finally, chicken nuggets coated with US and NUS treated batters exhibited greater cutting force values immediately after frying but declined within the first 10 min of heat lamp exposure and increased subsequently with extended heat lamp holding time. Furthermore, NUS-treated guar gum resulted in chicken nuggets with the most minimal variability in cutting force during post-frying holding, indicating that crispiness was maintained. Overall, application of ultrasound as a batter pretreatment technique can be exploited by the frying food industry as an alternative approach to producing low fat chicken nuggets with appreciable quality attributes. 相似文献
7.
Recently, application of ultrasound has attracted considerable interest as an alternative approach to traditional methods. In this study, response surface methodology (RSM) was used to optimize the conditions for grape mash treatment by ultrasound and by combination of ultrasound and enzyme. The results indicated that optimal conditions were the temperature of 74 °C and the time of 13 min for sonication treatment; and were the enzyme concentration of 0.05% and the time of 10 min for combined ultrasound and enzyme treatment. In comparison with traditionally enzymatic treatment, sonication treatment increased extraction yield 3.4% and shortened treatment time over three times; combined ultrasound and enzyme treatment increased extraction yield slightly, only 2%, but shortened treatment time over four times. After sonication treatment, enzymatic treatment increased extraction yield 7.3% and total treatment time of this method was still shorter than that of traditionally enzymatic treatment method. Besides, application of ultrasound improved the grape juice quality because it increased contents of sugars, total acids and phenolics as well as color density of grape juice. 相似文献
8.
The polyester fiber containing Ag nanoparticles was prepared through the chemical reduction under ultrasound irradiation. Influences of reduction reagents on the morphological properties of Ag nanoparticles@polyester fiber were studied. The sizes of metallic nanoparticles vary significantly with the types of reduction reagents used in the synthesis. A strong reduction reaction promotes a fast reaction rate and favors the formation of smaller nanoparticle. A weak reduction reagent induces a slow reaction rate and favors relatively larger particles. The products were investigated by means of scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). 相似文献
9.
The objective of this study was to explore the mechanisms of power ultrasound (PUS, 150 and 300 W) and treatment time (30 and 120 min) on the water-holding capacity (WHC) and tenderness of beef during curing. Beef muscle at 48 h post mortem was subjected to PUS treatment at a frequency of 20 kHz. Analysis of compression loss and shear force showed that PUS-assisted curing significantly increased the WHC and the tenderness of beef compared to static brining (p < 0.05). According to the analysis of LF-NMR, PUS treatment could increase the P21 values which indicated an improvement in water-binding ability of beef muscle. SDS-PAGE and LC-ESI-MS/MS analysis suggested that PUS induced moderate oxidation of myosin causing polymerization, which may contribute to increased water retention. On the other hand, an increased tenderness of beef is suggested by the increased MFI values and proteolysis of desmin and troponin-T. Transmission electron microscopy (TEM) further supported the effects of PUS on WHC and tenderness changes due to the swelling and disruption of myofibrils. Thus, these results provide knowledge about the mechanism for improving WHC and tenderness of beef by PUS curing, which could be employed as an emerging technology for various meat curing processes. 相似文献
10.
The effects of pulsed ultrasound (PUS) (power: 240 w) with varying time (0, 3, 6, 9, 12 and 15 min) on rheological and structural properties of chicken myofibrillar protein (CMP) were examined. PUS treatment significantly caused a decrease in the viscosity coefficients (k) but an increase in the flow index (n) value of CMP solutions within short time (0–6 min), while had no significant effect for longer time (9–15 min). Besides, at 6 min, the solubility and microstructure of CMP samples were optimum. The primary structure of CMP was not altered by PUS treatment. However, Raman spectroscopy revealed a decrease in the α-helix and β-sheets proportion and an increase in the β-turn of CMP following PUS treatment. Random coil reached a maximum at 6 min. The changes in tertiary and quaternary structure of CMP by PUS treatment also occurred. As PUS time extended, S0-ANS for CMP increased measured by ANS fluorescence probe method. However, the normalized intensity of 760 cm−1 increased from 0 min to 6 min, and then decreased to 15 min by Raman test. Moreover, the reactive sulphur (SH) contents and disulfide bonds (S-S) of samples increased while the total SH contents decreased within 0–6 min. At 9 min and above, the contents of reactive SH groups were almost equal to the contents of total SH groups. Differential scanning calorimetry (DSC) of CMP showed that peak temperature (Td2) for myosin and peak temperature (Td3) for actin were both reduced in the first 6 min, while Td3 was not observed from 9 min following PUS treatment. Therefore, 6 min was the optimum PUS time to obtain better CMP rheological and structural properties. 相似文献
11.
As a non-thermal processing method, the ultrasound treatment prior to the frying process has been demonstrated with great potential in reducing the oil absorption of fried food. This research aimed to evaluate the effect of ultrasound pretreatment on starch properties, water status, pore characteristics, and the oil absorption of potato slices. Ultrasound probe set with two power (360 W and 600 W) at the frequency of 20 kHz for 60 min was applied to perform the pretreatments. The results showed that ultrasound pretreatment led to the surface erosion of starch granules and higher power made the structure of starch disorganized. Moreover, the fraction of bound water and immobilized water were changed after ultrasonic pretreatment. Pores with the minor diameters (0.4–3 μm and 7–12 μm) were formed after ultrasound pretreatment. The penetrated surface oil (PSO) content, and structure oil (STO) content were reduced by 27.31% and 22.25% respectively with lower power ultrasound pretreatment. As the ultrasound power increased, the surface oil (SO) content and PSO content increased by 25.34% and 12.89% respectively, while STO content decreased by 38.05%. By using ultrasonic prior to frying, the quality of potato chips has been greatly improved. 相似文献
12.
This study investigates the effect of high intensity focused ultrasound (HIFU) to muscle tissue transfected with a luciferase reporter gene under the control of a CMV-promoter. HIFU was applied to the transfected muscle tissue using a dual HIFU system. In a first group four different intensities (802 W/cm2, 1401 W/cm2, 2117 W/cm2, 3067 W/cm2) of continuous HIFU were applied 20 s every other week for four times. In a second group two different intensities (802 W/cm2, 1401 W/cm2) were applied 20 s every fourth day for 20 times. The luciferase activity was determined by bioluminescence imaging. The effect of HIFU to the muscle tissue was assessed by T1-weighted ± Gd-DTPA, T2-weighted and a diffusion-weighted STEAM sequence obtained on a 1.5-T GE-MRI scanner. Histology of the treated tissue was done at the end. In the first group the photon emission was at 3067.6 W/cm2 1.28 × 107 ± 3.1 × 106 photon/s (5.5 ± 1.2-fold), of 2157.9 W/cm2 8.1 ± 2.7 × 106 photon/s (3.2 ± 1.1-fold), of 1401.9 W/cm2 9.3 ± 1.3 × 106 photon/s (4.9 ± 0.4-fold) and of 802.0 W/cm2 8.6x ± 1.2 × 106 photon/s (4.5 ± 0.6-fold) compared to baseline. In the second group the photon emission was at 1401.9 W/cm2 and 802.0 W/cm2 14.1 ± 3.6 × 106 photon/s (6.1 ± 1.5-fold), respectively, 5.1 ± 4.7 × 106 photon/s (6.5 ± 2.0-fold). HIFU can enhance the luciferase activity controlled by a CMV-promoter. 相似文献
13.
Infant meat puree has an indispensable effect on the oral development and nutritional intake of infants. However, commercially available products have poor texture and relatively low digestibility. In this study, ultrasound (20 kHz and 200 W, 400 W, or 600 W) was applied to the pretreatment of raw meat for preparing infant meat puree for 15 min, 30 min, and 45 min. To assess the impact of ultrasound on infant meat puree, the viscosity, texture, water distribution, particle size and in vitro digestibility were determined. The results showed that, compared with control, viscosity and hardness of meat puree decreased and the texture was better in 400 W and 600 W groups. The content of immobilized water increased in comparison with the control. Ultrasound had no obvious effect on the digestibility of meat puree in gastric phase, but it increased the digestibility in intestinal phase with the highest digestibility (80.85%±3.33) in 600 W, 15 min group. Overall, the ultrasound parameters of 600 W for 15 min can be selected as the best condition to process infant meat puree. The findings provide a new perspective for the improvement of infant meat puree. 相似文献
14.
The effects of an implant on temperature distribution in a tissue-mimicking hydrogel phantom during the application of therapeutic ultrasound were investigated. In vitro experiments were conducted to compare the influences of plastic and metal implants on ultrasound diathermy and to calibrate parameters in finite element simulation models. The temperature histories and characteristics of the opaque (denatured) areas in the hydrogel phantoms predicted by the numerical simulations show good correlation with those observed in the in vitro experiments. This study provides an insight into the temperature profile in the vicinity of an implant by therapeutic ultrasound heating typically used for physiotherapy. A parametric study was conducted through numerical simulations to investigate the effects of several factors, such as implant material type, ultrasound operation frequency, implant thickness and tissue thickness on the temperature distribution in the hydrogel phantom. The results indicate that the implant material type and implant thickness are the main parameters influencing the temperature distribution. In addition, once the implant material and ultrasound operation frequency are chosen, an optimal implant thickness can be obtained so as to avoid overheating injuries in tissue. 相似文献
15.
Ultrasonic treatment of aramid fiber surface and its effect on the interface of aramid/epoxy composites 总被引:3,自引:0,他引:3
Aramid fiber/epoxy composites have been treated by ultrasound during the winding process to enhance the adhesion. According to the ultrasonic treatment interlaminar shear strength (ILSS) of composites has been greatly improved. Dynamic wetting method, XPS and AFM are used to examine the microscopic properties of resultant composites. The enhanced ILSS is attributed to the ultrasonic cavitation, which improves the wetting between aramid fibers and resins. 相似文献
16.
The aim of the study was to investigate the influence of ultrasound treatment on the carrot tissue microstructure, colour and carotenoids content. To avoid adverse effects of rinsing out substances contained in the raw material, carrot slices were vacuum-packed and treated with ultrasounds in an ultrasonic bath using 21 and 35 kHz frequency for 10, 20 and 30 min. Images of the carrot tissue made by scanning electron microscope were analysed by calculating the cross-section area for each cell. The colour was measured using CIE L∗a∗b∗ method. To determine total carotenoid content spectrophotometric method was used. Obtained results indicate that the structural properties of carrots treated with ultrasound were significantly different from the samples without any treatment and it was clearly noticed during analysing images of scanning electron microscope. There was observed the influence of ultrasound treatment on colour L∗, a∗ and b∗ parameters, especially for carrot treated with ultrasound for 30 min, independent of the applied frequency of the ultrasonic waves. Similarly, sonic treatment resulted in substantial increase of carotenoid in comparison to raw carrot, especially in the case of 35 kHz frequency ultrasounds. Probably, such significant increase is caused by the destruction of the original structure and thus higher extraction ability of these compounds. 相似文献
17.
Centella asiatica possess various health-promoting activities owing to its bioactive compounds such as triterpenes, flavonoids, and vitamins. Ultrasound treatment during the post-harvest process is a good strategy for eliciting secondary metabolite in plants. The present study investigated the effect of ultrasound treatment for different time durations on the bioactive compounds and biological activities of C. asiatica leaves. The leaves were treated with ultrasound for 5, 10, and 20 min. Ultrasound elicitation (especially for 10 min) markedly elevated the accumulation of stress markers, leading to enhanced phenolic-triggering enzyme activities. The accumulation of secondary metabolites and antioxidant activities were also significantly improved compared with that in untreated leaves. In addition, ultrasound-treated C. asiatica leaves protected myoblasts against H2O2-induced oxidative stress by regulating reactive oxygen species production, glutathione depletion, and lipid peroxidation. These findings indicate that elicitation using ultrasound can be a simple method for increasing functional compound production and enhancing biological activities in C. asiatica leaves. 相似文献
18.
Rutin is a biologically active polyphenol, but its poor water solubility and low bioavailability limit its application to the food industry. We investigated the effect of ultrasound treatment on the properties of rutin (R) and whey protein isolate (WPI) using spectral and physicochemical analysis. The results revealed that there was covalent interaction between whey protein isolate with rutin, and the binding degree of whey isolate protein with rutin increased with ultrasound treatment. Additionally, solubility and surface hydrophobicity of WPI-R complex improved with ultrasonic treatment, and a maximum solubility of 81.9 % at 300 W ultrasonic power. The ultrasound treatment caused the complex to develop a more ordered secondary structure, resulting in a three-dimensional network structure with small and uniform pore sizes. This research could provide a theoretical reference for studying protein–polyphenol interactions and their applications in food delivery systems. 相似文献
19.
20.
The influence of immersion and contact ultrasound treatment on selected properties of the apple tissue 总被引:1,自引:0,他引:1
Artur Wiktor Magdalena SledzMalgorzata Nowacka Katarzyna RybakDorota Witrowa-Rajchert 《Applied Acoustics》2016
Ultrasound (US) treatment is considered to be one of the most promising non-thermal technology used in the food processing. The food-related applications of this technique are linked to the analytical and technological purposes. The ultrasound waves in the food can cause the formation of micro-channels due to the systematic and alternating compression and decompression of the material (so called “sponge effect”). Additionally, in liquids the ultrasound application can cause the cavitation which can modify the food properties as well. Hence, due to its mechanism, the ultrasound treatment can also improve the extraction of pigments, aromas or antioxidants from the food matrices. 相似文献