首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 0 毫秒
1.
Ipomoea pes-caprae (L.) R. Br (Convolvulaceae) is a commonly used marine traditional Chinese medicine in the southern coastal areas of China. It has been widely used to treat rheumatoid arthritis, but its effective substances and anti-rheumatoid arthritis mechanism remain ambiguous. Hence, in this study, the chemical profile and absorbed ingredients of Ipomoea pes-caprae were elucidated by ultra-performance liquid chromatography-mass spectrometry. Moreover, targeted network pharmacology was used to clarify the mechanism of action of Ipomoea pes-caprae in treating rheumatoid arthritis. Finally, 23 compounds were identified in the aqueous extracts of Ipomoea pes-caprae and 12 absorbed ingredients were detected in rats' plasma. These 12 absorbed ingredients might be the essential effective substances of Ipomoea pes-caprae. The tissue distributions of 3 absorbed ingredients in rats were successfully analyzed. The targeted network pharmacological analysis results indicated that the regulation of inflammatory reaction, immune response, cell proliferation, and apoptosis were the critical mechanism of Ipomoea pes-caprae against rheumatoid arthritis. This study successfully clarified the effective substances and potential mechanisms of Ipomoea pes-caprae in treating rheumatoid arthritis. The results of this research could provide a valuable reference for further scientific research and clinical application.  相似文献   

2.
BackgroundSUANPANQI, the pseudo phosphorous stem of Cremastra appendiculata, is one of the most well-known traditional Chinese medicine, which has been shown to inhibit tumorigenesis in various human cancers. However, the underlying mechanism of SUANPANQI treatment against breast cancer (BRCA) remains unclear. In this study. we aim to investigate the bioactive compounds and mechanisms of SUANPANQI in the treatment of BRCA based on network pharmacology and molecular docking.MethodsThe compounds were collected from previous research. SwissADME was used to screen bioactive compounds. The targets corresponding to SUANPANQI and BRCA were obtained using MalaCards and SwissTargetPrediction. SUANPANQI-related and BRCA-related targets were found and then overlapped to get intersections, which represented potential anti-BRCA targets of SUANPANQI. The Cytoscape software was used to construct bioactive compounds targeting the BRCA network. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the targets was extracted from the metascape database, then conducted using the Cluster Profiler package in R software. Protein-Protein interaction (PPI) network was constructed using the STRING online database and analyzed using Cytoscape software. Pivotal genes were screened using the topological analysis, survival analysis, and pathological stage analysis. Molecular docking analysis was used to verify whether the bioactive compounds had a definite affinity with the pivotal targets.ResultsSixty-five bioactive compounds of SUANPANQI were involved with 225 predicted BRCA targets. Then, a compound-target network and a PPI network were constructed. The GO analysis and KEGG enrichment analysis suggested that SUANPANQI worked against BRCA via PI3K-Akt, Ras, FoxO, Rap1, and ErbB signaling pathways, etc. After topological analysis, survival analysis, and pathological stage analysis of the SUANPANQI potential targets against BRCA, 6 pivotal target genes (AR, HSP90AA1, MMP9, PGR, PTGS2, TNF) that were highly responsible for the therapeutic effects of SUANPANQI against BRCA were obtained. Molecular docking results showed that 6 bioactive compounds of SUANPANQI had strong binding efficiency with the 6 pivotal genes.ConclusionsThe present study clarifies the mechanism of SUANPANQI against BRCA through multiple targets and pathways, and provides evidence to support its clinical use.  相似文献   

3.
The cause of rheumatoid arthritis (RA) is unclear. Xiaohuoluo wan (XHLW) is a classical Chinese medicine that is particularly effective in the treatment of RA. Given the chemical composition of XHLW at the overall level has been little studied and the molecular mechanism for the treatment of RA is not clear, we searched for the potential active compounds of XHLW and explored their anti-inflammatory mechanism in the treatment of RA by flexibly integrating the high-resolution ultra-performance liquid chromatography–mass spectrometry (UPLC–MS)-based in vitro and in vivo chemomics, network pharmacology, and other means. The results of the study identified that the active compounds of XHLW, such as alkaloids, nucleosides, and fatty acids, may play an anti-inflammatory role by regulating key targets such as IL-2, STAT1, JAK3, and MAPK8, inducing immune response through IL-17 signaling pathway, T-cell receptor, FoxO, tumor necrosis factor (TNF), and so forth, inhibiting the release of inflammatory factors and resisting oxidative stress and other pathways to treat RA. The results of this study provide referable data for the screening of active compounds and the exploration of molecular mechanisms of XHLW in the treatment of RA.  相似文献   

4.
Anemia is a common clinical hematological disease with a high incidence, which seriously affects human health. Shengyu Decoction is often used in the treatment of anemia. However, the pharmacodynamic substance basis and therapeutic mechanism are still unclear, which hinders the comprehensive development and utilization of Shengyu Decoction. In this study, 143 compounds were identified in Shengyu Decoction using high-throughput ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, 24 of which were absorbed into the blood. Taking these blood-entering ingredients as the research object, we found through network pharmacology research that ferulic acid, calycosin, and astragaloside A can act on AKT1, MAPK1, and MAPK14, and play a role in treating anemia through PI3K-Akt signaling pathway and Pathways in anemia. Finally, it was demonstrated that the active compound could bind to the core target with good affinity by molecular docking. The research shows that Shengyu Decoction has multi-component, multi-target, and multi-channel effects in the treatment of anemia, which provides a basis for the development and clinical application of Shengyu Decoction.  相似文献   

5.
In this study, the network pharmacology analysis method was used to explore the bioactive components and targets of Xianlinggubao (XLGB) and further elucidate its potential biological mechanisms of action in the treatment of osteoporosis (OP). The bioactive compounds and predictive targets of XLGB were collected from the traditional Chinese medicine systems pharmacology databases and analysis platform(TCMSP), the Encyclopeida of traditional Chinese medicine (ETCM), traditional Chinese medicine Databse@Taiwan, ChEMBL, STITCH, and SymMap database. The targets corresponding to OP were obtained by using Online Mendelian Inheritance in Man® (OMIM), GeneCards, the National Center for Biotechnology Information-Gene database. The XLGB-OP targets were obtained by intersecting with the targets of XLGB and OP. Protien-Protien interaciton (PPI) network was constructed using STRING online database and analyzed using Cytoscape 3.7.0 software to screen out hub genes. Gene ontology (GO) and KEGG enrichment analysis of the target in the PPI network was conducted using the ClusterProfiler package in R with adjusted p-value<0.05. A total of 65 XLGB bioactive compounds were screened corresponding to 776 XLGB targets and 2556 OP targets. The GO analysis and KEGG enrichment analyses suggested XLGB played a therapeutic roles in OP treatment via the interleukin-17 signaling pathway, hypoxia-inducible factor-1 signaling pathway, insulin resistance, Th-17 signaling pathway, etc. Five hub genes (AKT1, MAPK1, MAPK8, TP53, and STAT3) were screened using the degree algorithm, and molecular docking stimulation results showed that most bioactive compounds of XLGB had strong binding efficiency with hub genes. Overall, this study laid the foundation for further in vivo and in vitro experimental research and expanded the clinical applications of XLGB.  相似文献   

6.
Lung cancer shows the highest incidence rate in the world. Thus, it has become increasingly important to find therapeutic drugs to treat lung cancer. Farfarae Flos (FF) has been used in traditional Chinese medicine to treat pulmonary diseases such as cough, bronchitis and asthmatic disorders. In this study, the anti-proliferation effects of petroleum extracts of FF (PEFF) on Lewis lung cancer cells and the corresponding mechanisms were studied using cell metabolomics. Fifteen differential metabolites in the cell extracts and the corresponding medium related to the anti-proliferation effect of PEFF were identified, which were probably involved in pyruvate metabolism and glycine, serine and threonine metabolism. For the cellular uptake compounds in PEFF, six metabolites derived from two prototype compounds were also tentatively identified by UHPLC-Q-Orbitrap high-resolution MS. Network pharmacology analysis demonstrated that the anti-proliferation mechanism of PEFF was also probably related to the target genes, including, Aurora-A, glutathione S-transferase Mu 1 (GSTM1), glutathione S-transferase P 1 (GSTP1), progesterone receptor and heme oxygenase-1 (HO-1), and further associated with the proteoglycans and PI3K/Akt signaling pathway. Cell metabolomics and network pharmacology analysis provided a holistic method to investigate the anti-proliferation mechanisms of PEFF. However, further studies were still needed to validate the potential target genes, pathways and active compounds in PEFF.  相似文献   

7.
Fructus Gleditsia sinensis Lam. (FGSL), Fructus Gleditsiae abnormalis (FGA), and Gymnocladus chinensis Baill. (GCB) are fruits of leguminous plants that are used in traditional medicine. Among them, FGSL and FGA are developed to different degrees, and GCB is related to them. The literature records indicate their use in the external treatment of carbuncle. Modern pharmacological studies have shown that the formation of a carbuncle is closely related to the occurrence and development of inflammation, and the volatile components contained in the FGSL/FGA drugs have significant anti-inflammatory effects. The solid phase micro extraction-gas chromatography-mass spectrometry (SPME–GC–MS) method was used to analyze the volatile components contained in FGSL, FGA, and GCB. Moreover, the molecular mechanism underlying the anti-inflammatory effects was explored based on network pharmacology and molecular docking. The SPME-GC-MS demonstrated significant differences in the chemical constituents and percentage contents among FGSL, FGA, and GCB. 13 common volatile components were identified in FGSL, FGA, and GCB. Through network pharmacology and molecular docking, the differences in the anti-inflammatory mechanism of FGSL, FGA, and GCB were initially revealed. This study laid the foundation for further study of FGSL, FGA, and GCB. Simultaneously, it also provided a reference for the correct use of FGSL, FGA, and GCB in the clinic.  相似文献   

8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号