首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 671 毫秒
1.
Calcium hydroxyapatite (CaHAP) and barium hydroxyapatite (BaHAP) have been prepared by a wet method from aqueous solutions with cation/P molar ratio of 1.67. The prepared particles were characterized using XRD, IR, TG-DTA and BET-N(2) adsorption measurements. The potential of the synthesized hydroxyapatites to remove Zn(II) from aqueous solutions was investigated in batch reactor under different experimental conditions. Both hydroxyapatites remove Zn(II) from aqueous solutions with an efficiency higher than 98% at initial pH around 6-8. The data reveal that the initial uptake was rapid and equilibrium was established in 20 and 60 min for CaHAP and BaHAP. The sorption process follows the pseudo-first-order kinetic with a rate constant (k(ads)) equals to 1.06x10(-2) and 1.91x10(-2) min(-1) for CaHAP and BaHAP, respectively. Zn(II) removal was quantitatively evaluated using Langmuir isotherm model and the monolayer sorption capacity (Q(max)) shows the values 102.04 and 36.62 mg g(-1) for CaHAP and BaHAP clarifying the high affinity of these novel sorbents for Zn(II) ions. Kinetically, the prepared apatites are feasible sorbents retain Zn(II) ions through a favorable and spontaneous sorption process. The possibility of metal recovery and regeneration of hydroxyapatites were investigated using several eluting agents include hydrochloric acids, double distilled water, calcium chloride, barium hydroxide, and copper chloride. Different desorption levels were obtained with the different adsorbents and the maximum recovery yield was achieved with copper chloride.  相似文献   

2.
The stability of self-assembled monolayers (SAMs) and multilayers formed on silicon surface by amino-terminated silanes and SAMs formed by alkyl and glycidyl terminated silanes were investigated in vitro with saline solution at 37 degrees C for up to 10 days. FTIR and XPS results indicated that amino-terminated SAMs and multilayers are very unstable if the alkyl chain is short ((CH2)3), while stable if the alkyl chain is long ((CH2)11). On the other hand, alkyl-terminated SAMs are very stable regardless of the alkyl chain length, and glycidyl terminated SAM retained approximately 77% of the organosilane molecules after 10 days. Hydrogen bonding between the organosilane monomer and silicon surface and among the organosilane monomers is believed to contribute to the instability of the SAM and multilayer formed by amino-terminated silane with a short alkyl chain ((CH2)3). Therefore, the widely used (3-aminopropyl) trimethoxysilane (APTMS) SAM and multilayer may not be suitable for implantable biomedical applications.  相似文献   

3.
基于聚对苯二甲酰对苯二胺(PPTA), 采用N-烷基化方法制备了系列PPTACns(烷基侧链碳原子数n=8, 10, 12, 14, 16, 18)刚性主链梳状高分子, 利用DSC, XRD和FTIR等方法研究了其主链堆积行为、 分子链构象及热性能等与烷基侧链长度及结晶特性之间的关系. XRD和DSC结果表明, 当烷基侧链碳原子数达到14时, 烷基侧链发生结晶. XRD结果显示, PPTACns具有层状结构, 烷基侧链长度对主链层间距影响显著. FTIR研究发现, 烷基侧链的聚集状态对PPTACns分子链的构象产生较大影响, 伴随着烷基侧链结晶的熔融, PPTACns的分子链构象发生显著改变. 烷基侧链处于熔融状态的PPTACns的νC=O和γC-H谱带峰位与烷基侧链不结晶的PPTACn接近.  相似文献   

4.
The influence of solvents on the conformational order of C(18) alkyl modified silica gels is studied by means of variable temperature FTIR spectroscopy. Symmetric and anti-symmetric CH(2) stretching modes were utilized for getting qualitative information about the changes in alkyl chain conformational order as a function of both protonated and perdeuterated solvents. It was found that interaction between the C(18) alkyl modified silica gels and the mobile phase results in pronounced changes of the alkyl chain conformational order. Furthermore, it was observed that some perdeuterated solvents exhibit isotope effects, which again is reflected by a different alkyl chain conformational order as compared to the corresponding stationary phases with protonated solvents.  相似文献   

5.
Seven alkyl methylphosphonic acids, products of hydrolytic degradation of organophosphorus chemical warfare agents, were obtained with a high purity (mostly above 98%), with the aim of being applyed as future certified reference materials. Ethyl (EMPA), isopropyl (IMPA), pinacolyl (PMPA), butyl (BUMPA), isobutyl (IBUMPA), cyclohexyl (CHMPA) and 2-ethylhexyl (EHMPA) monoesters of MPA were synthesized and characterized by MS EI, FTIR and NMR (1H, 13C, 31P), TLC, as well as GC and GC-MS after derivatization. The conditions for a direct quantitative GC FID analysis on CP-FFAP CB column of non-derivatized alkyl methylphosphonic acids were developed. This is the first successful attempt of a directed GC analysis of free alkyl phosphonic acids. Their chemical purity was determined and limit of quantification (LOQ) values for some of them were evaluated for the GC-FID method.  相似文献   

6.
Silica gels modified with n-alkyl chains (n = 18, 30) are prepared by two different synthetic routes and are examined by variable temperature FTIR and solid-state NMR spectroscopy. HPLC measurements of SRM 869, cis/trans ss-carotene isomers and xanthophylls isomers confirm the dependence of the separation mechanism on the alkyl chain length and the synthetic routes. The determination of the silane functionality and degree of cross-linking of silane ligands on the silica surface is achieved by 29Si CP/MAS NMR measurements. The structural order and mobility of the alkyl chains are investigated by means of variable temperature 13C CP/MAS NMR measurements. Variable temperature FTIR studies are performed where conformational order and flexibility of the alkyl chains in C18 and C30 phases are monitored through conformational sensitive CH2 symmetric, anti-symmetric stretching and wagging modes. In addition, the chromatographic properties of the C18 and C30 phases are determined. The results derived from the FTIR, NMR and HPLC measurements are discussed in the context of the applied synthetic routes and alkyl chain lengths.  相似文献   

7.
The adsorption affinity of bovine serum albumin (BSA) and lysozyme (LSZ) to calcium hydroxyapatite (CaHAP) was evaluated by desorption and two step adsorption methods. These experiments were carried out at 15°C in a 1×10−4 mol dm−3 KCl solution of pH 6.0. BSA molecules were scarcely desorbed, exhibiting an irreversible adsorption of BSA, though LSZ slightly desorbed. This result supports our previous findings that LSZ adsorbs weakly onto phosphate ions exposed on ac or bc faces of CaHAP while BSA adsorbs strongly onto positively charged sites on ac or bc faces of CaHAP. The amount of adsorbed LSZ was markedly increased by the pre-adsorption of BSA, where LSZ was adsorbed onto BSA-covered CaHAP. On the other hand, the amount of adsorbed BSA was not changed by the pre-adsorption of LSZ. In both pre-adsorption systems it was confirmed by an HPLC method that no protein molecule pre-adsorbed was desorbed after the post-adsorption procedure. Therefore, it was interpreted that the enhancement of adsorption of positively charged LSZ is induced by an electrostatic attractive force through pre-adsorption of negatively charged BSA molecules with a high coverage. However, since the coverage of LSZ onto CaHAP is considerably low, no stimulation of BSA adsorption occurred on the LSZ-covered surface. The formation of double protein adsorbed layers consisting of pre- and post-adsorbed proteins was proposed.  相似文献   

8.
Comb-like ionic complexes were prepared from polyuronic acids (pectinic and alginic acids) and alkyltrimethylammonium surfactants bearing linear alkyl chains with 18, 20 and 22 carbon atoms. In the condensed state, these complexes were able to self-assemble in ordered structures which were thermally stable up to ∼200 °C. The complexes were analysed by DSC and WAXS/SAXS and compared to their analogous made from poly(γ-glutamic acid). They all adopt a biphasic layered structure in which the main chain and the alkyl side chain alternate with a nanometric periodicity. Alkyl side chains were partially crystallized in these complexes and they show reversible melting at temperatures within the 60-80 °C range depending on the length of the polymethylene segment.  相似文献   

9.
A series of long and ultralong chain tetrabutylammonium alkyl carboxylate (TBACm, TBA = tetrabutylammonium ion; Cm = carboxylate ion C(m-1)H(2)(m-1)CO(2)(-) of total carbon number m) surfactants have been obtained by direct neutralization of the fatty acids with m = 12, 14, 18, 22, and 24 by tetrabutylammonium hydroxide. Time-resolved fluorescence quenching has been used to determine the micelle aggregation number (N) of the surfactants with m = 12, 14, and 18 in the temperature range 10-50 degrees C and of the surfactants with m = 22 and 24 in the temperature range 25-60 degrees C. In all instances the values of N were well below those that can be calculated for the maximum spherical micelle formed by surfactants with the same alkyl chain as the investigated surfactants on the basis of the oil drop model for the micelle core. The microstructure of selected solutions of TBAC22 was examined using transmission electron microscopy at cryogenic temperature and compared to the microstructure of solutions of TBA dodecyl and tetradecyl sulfates. These observations generally confirmed the findings of TRFQ. The self-association behavior of these anionic surfactants with TBA counterions is explained on the basis of the large size and the hydrophobicity of the tetrabutylammonium ions. The important differences in behavior that have been evidenced between tetrabutylammonium alkyl carboxylates and alkyl sulfates are discussed in terms of differences in distribution of the surfactant electrical charge on the headgroup and alkyl chain predicted by quantum chemical calculations (Langmuir 1999, 15, 7546).  相似文献   

10.
We have introduced an oxygen atom and a carbon-carbon double bond with a trans-configuration (E) into the terminal alkyl chain of a wide variety of liquid crystalline cyclohexane derivatives to produce a variety of new methyl (E)-allyl ethers. The melting points and tendency to form smectic mesophases are often low, while nearly all of the compounds prepared exhibit a nematic phase. Thus, even two-ring derivatives can exhibit nematic phases over a wide temperature range (≤80°C), sometimes starting below room temperature (Tm≈10°C). Comparisons with the corresponding derivatives incorporating either just an oxygen atom or just a carbon-carbon double bond in the same position indicate that synergetic effects lead to broader nematic phases than would otherwise have been expected. Thus many of the new methyl (E)-allyl ethers exhibit nematic phases over a wider temperature range than the corresponding materials with an unsubstituted alkyl chain attached to the cyclohexyl ring. The new compounds are easily prepared from known starting materials. Many intermediates are themselves liquid crystalline. This allows investigation of the relationship between liquid crystal transition temperatures and the nature of the terminally substituted alkyl chain (for example, incorporating C=C, OH, CO2C2H5 and OCH3 groups).  相似文献   

11.
Organically-modified hydroxyapatite materials were synthesized through the addition of oxalic, succinic, adipic and citric acids to a calcium hydroxide solution before neutralization by ammonium dihydrogenphosphate. All carboxylic acids have a significant influence on apatite crystallinity and nanoparticle size, as indicated by XRD and TEM. Chemical and thermogravimetric analyses as well as FTIR and {(1)H}-(13)C CP MAS NMR spectroscopies indicate that the additives are present in the final material. (1)H, {(1)H}-(31)P HPDec MAS, CP MAS and 2D {(1)H}-(31)P CP-HETCOR MAS NMR experiments suggest that carboxylic acids are localized on the apatite nanocrystallite surface, resulting in the formation of a disordered outer layer. Nitrogen sorption measurements indicate minor modifications of the specific surface area of the resulting mesoporous materials upon carboxylic acid addition but more significant variations in the average dimensions of the pores as well as in the chemical nature of the pore surface. Although these evolutions are mainly in good agreement with the ligand affinity for calcium ions in solution, an unexpected difference was observed between succinic and adipic acid, that may be attributed to steric constraints resulting from the interfacial nature of the calcium-ligand interactions. These data should provide useful guidelines to identify novel efficient additives to control apatite growth.  相似文献   

12.
设计合成了3种可溶液加工的基于噻吩给体和2-吡喃-4-亚基丙二氰(PM)受体的新型Donor-Acceptor-Donor(D-A-D)型有机小分子TPT-N, TPT-S和TPT-D. 研究了噻吩给体单元上烷基链的数目对分子的溶解性、 光物理(吸收特性)、 热稳定和光电性能的影响. 结果表明, 随着烷基链的增加, 分子的溶解性增加, 成膜性能提高; 分子在溶液中的吸收光谱发生红移, 薄膜的吸收谱带变窄, 分子的最高占有分子轨道(HOMO)能级提高. 以D-A-D型有机小分子为给体, 富勒烯C60衍生物-苯基-C61-丁酸甲酯(PCBM)为受体制备了结构为ITO/PEDOT∶PSS/D-A-D∶PCBM/LiF/Al的体异质结太阳能电池. 研究结果表明, 基于单烷基链的TPT-S的太阳能电池具有相对较高的能量转换效率. 说明在D-A-D型有机小分子太阳能电池材料中, 烷基链的数目是决定材料性能及器件性能的重要因素之一.  相似文献   

13.
The ordering of dodecyl chains has been investigated in mixed monolayers of phosphonic acid capping agents on the surface of hydrothermally prepared zirconia nanocrystals. Methyl-, phenyl-, pyryl-, and tert-butylphosphonic acids have been used to investigate series with different mixing ratios with dodecylphosphonic acid as the cocapping agent for the mixed monolayer formation. Fourier transform infrared (FTIR) studies revealed that an increasing amount (different for each type) of coadsorbed capping agent reduces the ordering of the dodecyl chains significantly. Small-angle X-ray scattering (SAXS) verified that with increasing amount of cocapping agent the agglomeration of the particles decreases. The strong correlation of the agglomeration behavior with the ordering of the surface-bound alkyl chains leads to the conclusion that interparticle bilayers, formed via long alkyl chain packing, are responsible and can be controlled on a molecular level by coadsorbing various molecules. On the basis of this correlation, nanoparticles can be used as probes for self-assembled monolayer investigation by an indirect structural method (SAXS) and correlated with the routine spectroscopical method for the chemical analysis of surface groups (FTIR).  相似文献   

14.
Cellulose was reacted with a series of 4-alkoxytrityl chlorides (C(n)TCl, n: number of carbon atoms in a saturated alkyl chain) under homogeneous reaction conditions in LiCl-N,N-dimethyl acetoamide to give a series of 6-O-(4-alkoxytrityl)celluloses (C(n)TC) with a high degree of substitution (DS), from 0.94 to 0.99, and with high regioselectivity at the 6-O position. Solubility of the C(n)TC in nonpolar solvents depended on the alkyl chain length: as the alkyl chain lengthens, cellulose derivatives become more hydrophobic and are readily soluble in nonpolar solvents, but not in polar solvents. Acetates of the C(4)-C(18)TC (C(4)-C(18)TCAc) showed anisotropic structures over melting temperatures (T(m)) examined under a polarized optical microscope (POM). Over isotropization temperatures (T(i)), flow birefringence were detected for C(12)-C(18)TCAc. The T(m) and T(i) decreased linearly with an increasing number of carbon atoms in the alkyl substituent. Wide-angle X-ray scattering (WAXS) studies of C(n)TC indicated that the fully extended side chains were perpendicular to the polymer backbone and interdigitated. These C(n)TC with the improved solubility may be used as starting materials for further derivatization focused on the secondary hydroxyl groups at the C-2 and C-3 positions.  相似文献   

15.
The ability to tune interparticle spatial properties of nanoparticle assemblies is essential for the design of sensing materials toward desired sensitivity and selectivity. This paper reports findings of an investigation of molecularly mediated thin film assemblies of metal nanoparticles with controllable interparticle spatial properties as a sensing array. The interparticle spatial properties are controlled by a combination of alpha,omega-difunctional alkyl mediators (X-(CH(2))(n)-X) such as alkyl dithiols, dicarboxylate acids, and alkanethiol shells capped on nanoparticles. Alkanethiolate-capped gold and gold-silver alloy nanoparticles (2-3 nm) were studied as model building blocks toward the thin film assemblies, whereas the variation of alkyl chain length manipulates the interparticle spacing. The thin films assembled on an interdigitated microelectrode array platform are characterized for determining their responses to the sorption of volatile organic compounds (VOCs). The correlation between the response sensitivity and the interparticle spacing properties revealed not only a clear dependence of the sensitivity on alkyl chain length but also the occurrence of a dramatic change of the sensitivity in a region of chain length for the alkyl mediator comparable with that of the capping alkyl chains. This finding reflects a balance between the interparticle chain-chain cohesive interdigitation and the nanostructure-vapor interaction which determines the relative change of the electrical conductivity of the inked nanoparticle thin film in response to vapor sorption. The results, along with statistical analysis of the sensor array data in terms of sensitivity and selectivity, have provided important insights into the detailed delineation between the interparticle spacing and the nanostructured sensing properties.  相似文献   

16.
Infrared, Raman and solid state13C NMR spectra have been recorded for arange of inclusion compounds of urea containingstraight chain aliphatic carboxylic acids(butyric – decanoic) as guests. Inclusioncompounds are not formed with formic, acetic andpropionic acids. Thiourea does not forminclusion compounds with any of the C1 to C10acids. The vibrational and NMR data support theconclusion that the acids are present ashydrogen bonded dimers in the channels of thehost. The alkyl chain 13C chemical shiftvalues are very different from those of acidguests in the cavities formed in Dianin'scompound. These suggest that the alkyl chainsare present in the all-trans conformation,although weak bands observed in the spectrum ofthe decanoic acid inclusion compound lend somesupport to suggestions based on MM calculationsthat other conformations might be present.  相似文献   

17.
Highly ordered morphological features were characterized for molecular dynamics simulated alkyl-modified silica models that represent chromatographic materials with enhanced shape recognition capability. Deep cavities (8-10A wide) within the alkyl chains were identified for C18 polymeric models corresponding to shape-selective RPLC stationary phases. The all-trans conformational distal-end segments of these isolated cavities averaged over a 100 ps simulation time interval were observed to increase (up to 15 A) in models with an increase in both surface coverage and corresponding shape selectivity. Similar-structure cavities with significant alkyl chain ordered regions (>11A) were isolated from two independent C18 models (differing in bonding chemistry, density and temperature) that represent highly shape-selective materials. The size and depth of these ordered regions increased (up to 28 A) for the extended-length C30 alkyl phase models. These initial results offer a physical representation of alkyl-modified surfaces that may facilitate the identification of potential molecular features that may be involved in the shape-selective retentive processes, as well as illustrating the potential for such computational techniques to predict the molecular recognition capabilities of novel analyte-specific sorbents.  相似文献   

18.
Layered calcium octyl phosphate (CH3(CH2)7OPO3Ca.1.6H2O: CaOP), which is composed of a multilayer alternating bilayer of octyl phosphates and a dicalcium phosphate dihydrate (DCPD)-like phase, was thermally treated in vacuo and the intercalation of n-alkyltrimethylammonium ions into the materials was examined. The octyl groups in the layer were eliminated by outgassing above 250 degrees C to give the amorphous calcium phosphates. Further, the specific surface area was steeply increased and mesopores with a diameter of ca. 2.0 nm were formed. IR results indicated that the surface P-OH groups were generated by outgassing at 250 degrees C. When the CaOP outgassed at 250 degrees C was treated with n-alkyltrimethylammonium ion solutions (carbon number of alkyl group, n=14-18), three XRD peaks reappeared below 2theta=15 degrees and the d-spacing ratio of these peaks was 1:1/2:1/3. These facts indicate that the n-alkyltrimethylammonium ions were intercalated into the amorphous calcium phosphate phases.  相似文献   

19.
In this study, X-ray diffraction (XRD), Fourier transform infrared spectrometer (FTIR) together with Scanning probe microscopy (SPM) were used to characterize the structure and morphology of the complexes, where the hydrobiotites (Xinfiang) were modified by single-chain surfactants octyltrimethylammonium bromide (OTMA) and octadecyltrimethylammonium bromide (ODTMA). XRD patterns showed that the structure of complexes was significantly influenced by the surfactant concentration and the alkyl chain length, because obvious changes took place in the basal spacing. Furthermore, according to the XRD results, several arrangements of surfactant molecules within the hydrobiotite interlayer space were deduced. The FTIR spectrum indicated that the surfactant contents in complexes dramatically increased with the alkyl chain length. The SPM micrographs demonstrated that the surfaces of complexes prepared at lower surfactant concentration were relatively flat compared with that prepared at higher concentration, while those with higher surfactant concentration had much steeper surface due to the alkyl chain length. It was concluded that structure and morphology of surfactant/hydrobiotite complexes depend not only on the surfactant concentration, but also strongly on the surfactant species.  相似文献   

20.
The purpose of this work is to study the self-assembling of some synthesized thiol surfactants namely (mercaptopropane-, mercaptohexane-, mercaptooctane-, and mercaptodecane sodium sulfonate) on the fabricated gold nanoparticles. The self-assembling of these surfactants on gold nanoparticles characterized using different techniques such as FTIR spectroscopy, UV spectroscopy, and transmission electron microscopy (TEM). Spectroscopic evidence suggests that the synthesized thiol surfactants have been attached to the gold nanoparticles. The effect of self-assembling of these surfactants on the size of the gold nanoparticles was studied using TEM images. The growth of the gold nanoparticles was investigated with respect to the increase of alkyl chain in the synthesized thiol surfactants. The results show that the stabilization of gold nanoparticles was affected by the increase in alkyl chain length of these surfactants. The effect of gold nanoparticles on the interfacial tension and the emulsion stability of these surfactants with crude oil was studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号