首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We define Poisson quasi-Nijenhuis structures with background on Lie algebroids and we prove that any generalized complex structure on a Courant algebroid which is the double of a Lie algebroid has an associated Poisson quasi-Nijenhuis structure with background. We prove that any Lie algebroid with a Poisson quasi-Nijenhuis structure with background constitutes, with its dual, a quasi-Lie bialgebroid. We also prove that any pair (π,ω) of a Poisson bivector and a 2-form induces a Poisson quasi-Nijenhuis structure with background and we observe that particular cases correspond to already known compatibilities between π and ω. This paper was presented as a poster in the conference “Poisson 2008”, EPFL, Lausanne, in July 2008.  相似文献   

2.
The modular vector field of a Poisson–Nijenhuis Lie algebroid A is defined and we prove that, in case of non-degeneracy, this vector field defines a hierarchy of bi-Hamiltonian A-vector fields. This hierarchy covers an integrable hierarchy on the base manifold, which may not have a Poisson–Nijenhuis structure.   相似文献   

3.
We present a connection between the BFV-complex (abbreviation for Batalin-Fradkin-Vilkovisky complex) and the strong homotopy Lie algebroid associated to a coisotropic submanifold of a Poisson manifold. We prove that the latter structure can be derived from the BFV-complex by means of homotopy transfer along contractions. Consequently the BFV-complex and the strong homotopy Lie algebroid structure are L quasi-isomorphic and control the same formal deformation problem. However there is a gap between the non-formal information encoded in the BFV-complex and in the strong homotopy Lie algebroid respectively. We prove that there is a one-to-one correspondence between coisotropic submanifolds given by graphs of sections and equivalence classes of normalized Maurer-Cartan elemens of the BFV-complex. This does not hold if one uses the strong homotopy Lie algebroid instead.  相似文献   

4.
Derived Brackets   总被引:3,自引:1,他引:2  
We survey the many instances of derived bracket construction in differential geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analogous properties, and the theory of Lie algebroids unifies the results valid for manifolds on the one hand, and for Lie algebras on the other. We outline the role of derived brackets in the theory of Poisson structures with background'.  相似文献   

5.
Derived Brackets     
We survey the many instances of derived bracket construction in differential geometry, Lie algebroid and Courant algebroid theories, and their properties. We recall and compare the constructions of Buttin and of Vinogradov, and we prove that the Vinogradov bracket is the skew-symmetrization of a derived bracket. Odd (resp., even) Poisson brackets on supermanifolds are derived brackets of canonical even (resp., odd) Poisson brackets on their cotangent bundle (resp., parity-reversed cotangent bundle). Lie algebras have analogous properties, and the theory of Lie algebroids unifies the results valid for manifolds on the one hand, and for Lie algebras on the other. We outline the role of derived brackets in the theory of ‘Poisson structures with background’.  相似文献   

6.
We study Maurer–Cartan elements on homotopy Poisson manifolds of degree n. They unify many twisted or homotopy structures in Poisson geometry and mathematical physics, such as twisted Poisson manifolds, quasi-Poisson \(\mathfrak g\)-manifolds, and twisted Courant algebroids. Using the fact that the dual of an n-term \(L_\infty \)-algebra is a homotopy Poisson manifold of degree \(n-1\), we obtain a Courant algebroid from a 2-term \(L_\infty \)-algebra \(\mathfrak g\) via the degree 2 symplectic NQ-manifold \(T^*[2]\mathfrak g^*[1]\). By integrating the Lie quasi-bialgebroid associated to the Courant algebroid, we obtain a Lie-quasi-Poisson groupoid from a 2-term \(L_\infty \)-algebra, which is proposed to be the geometric structure on the dual of a Lie 2-algebra. These results lead to a construction of a new 2-term \(L_\infty \)-algebra from a given one, which could produce many interesting examples.  相似文献   

7.
In this paper we study the finitely generated algebras underlyingW algebras. These so called finiteW algebras are constructed as Poisson reductions of Kirillov Poisson structures on simple Lie algebras. The inequivalent reductions are labeled by the inequivalent embeddings ofsl 2 into the simple Lie algebra in question. For arbitrary embeddings a coordinate free formula for the reduced Poisson structure is derived. We also prove that any finiteW algebra can be embedded into the Kirillov Poisson algebra of a (semi)simple Lie algebra (generalized Miura map). Furthermore it is shown that generalized finite Toda systems are reductions of a system describing a free particle moving on a group manifold and that they have finiteW symmetry. In the second part we BRST quantize the finiteW algebras. The BRST cohomology is calculated using a spectral sequence (which is different from the one used by Feigin and Frenkel). This allows us to quantize all finiteW algebras in one stroke. Examples are given. In the last part of the paper we study the representation theory of finiteW algebras. It is shown, using a quantum version of the generalized Miura transformation, that the representations of finiteW algebras can be constructed from the representations of a certain Lie subalgebra of the original simple Lie algebra. As a byproduct of this we are able to construct the Fock realizations of arbitrary finiteW algebras.  相似文献   

8.
We describe enveloping algebras of finite-dimensional Lie algebras which are formal in the sense that their Hochschild complex as a differential graded Lie algebra is quasi-isomorphic to its Hochschild cohomology. For Abelian Lie algebras this is true thanks to the Kontsevich formality theorem. We are using his formality map twisted by the group-like element generated by the linear Poisson structure to simplify the problem, and then study examples. For instance, the universal enveloping algebras of the Lie algebras are formal. We also recover our rigidity results for enveloping algebras from this new angle and present some explicit deformations of linear Poisson structure in low dimensions.  相似文献   

9.
We introduce a new topological sigma model, whose fields are bundle maps from the tangent bundle of a 2-dimensional world-sheet to a Dirac subbundle of an exact Courant algebroid over a target manifold. It generalizes simultaneously the (twisted) Poisson sigma model as well as the G/G-WZW model. The equations of motion are satisfied, iff the corresponding classical field is a Lie algebroid morphism. The Dirac Sigma Model has an inherently topological part as well as a kinetic term which uses a metric on worldsheet and target. The latter contribution serves as a kind of regulator for the theory, while at least classically the gauge invariant content turns out to be independent of any additional structure. In the (twisted) Poisson case one may drop the kinetic term altogether, obtaining the WZ-Poisson sigma model; in general, however, it is compulsory for establishing the morphism property.  相似文献   

10.
Cohomology and deformation theories are developed for Poisson algebras starting with the more general concept of a Leibniz pair, namely of an associative algebraA together with a Lie algebraL mapped into the derivations ofA. A bicomplex (with both Hochschild and Chevalley-Eilenberg cohomologies) is essential.  相似文献   

11.
We present a direct construction of the abstract generators for q-deformed WN{\cal W}_N algebras. New quantum algebraic structures of Wq,p{\cal W}_{q,p} type are thus obtained. This procedure hinges upon a twisted trace formula for the elliptic algebra \elp\elp generalizing the previously known formulae for quantum groups. It represents the q-deformation of the construction of WN{\cal W}_N algebras from Lie algebras.  相似文献   

12.
A novel gravity theory based on Poisson Generalized Geometry is investigated. A gravity theory on a Poisson manifold equipped with a Riemannian metric is constructed from a contravariant version of the Levi‐Civita connection, which is based on the Lie algebroid of a Poisson manifold. Then, we show that in Poisson Generalized Geometry the R‐fluxes are consistently coupled with such a gravity. An R‐flux appears as a torsion of the corresponding connection in a similar way as an H‐flux which appears as a torsion of the connection formulated in the standard Generalized Geometry. We give an analogue of the Einstein‐Hilbert action coupled with an R‐flux, and show that it is invariant under both β‐diffeomorphisms and β‐gauge transformations.  相似文献   

13.
Given any Poisson action G×PP of a Poisson–Lie group G we construct an object =T *G*T* P which has both a Lie groupoid structure and a Lie algebroid structure and which is a half-integrated form of the matched pair of Lie algebroids which J.-H. Lu associated to a Poisson action in her development of Drinfeld's classification of Poisson homogeneous spaces. We use to give a general reduction procedure for Poisson group actions, which applies in cases where a moment map in the usual sense does not exist. The same method may be applied to actions of symplectic groupoids and, most generally, to actions of Poisson groupoids.  相似文献   

14.
In this paper, we introduce the notion of a pre-symplectic algebroid and show that there is a one-to-one correspondence between pre-symplectic algebroids and symplectic Lie algebroids. This result is the geometric generalization of the relation between left-symmetric algebras and symplectic (Frobenius) Lie algebras. Although pre-symplectic algebroids are not left-symmetric algebroids, they still can be viewed as the underlying structures of symplectic Lie algebroids. Then we study exact pre-symplectic algebroids and show that they are classified by the third cohomology group of a left-symmetric algebroid. Finally, we study para-complex pre-symplectic algebroids. Associated with a para-complex pre-symplectic algebroid, there is a pseudo-Riemannian Lie algebroid. The multiplication in a para-complex pre-symplectic algebroid characterizes the restriction to the Lagrangian subalgebroids of the Levi–Civita connection in the corresponding pseudo-Riemannian Lie algebroid.  相似文献   

15.
16.
 We introduce a class of spin Calogero-Moser systems associated with root systems of simple Lie algebras and give the associated Lax representations (with spectral parameter) and fundamental Poisson bracket relations. The associated integrable models (called integrable spin Calogero-Moser systems in the paper) and their Lax pairs are then obtained via Poisson reduction and gauge transformations. For Lie algebras of A n -type, this new class of integrable systems includes the usual Calogero-Moser systems as subsystems. Our method is guided by a general framework which we develop here using dynamical Lie algebroids. Received: 19 October 2001 / Accepted: 7 June 2002 Published online: 21 October 2002 RID="*" ID="*" Research partially supported by NSF grant DMS00-72171.  相似文献   

17.
Abstract

We study the q → ∞ limit of the q-deformation of the WZW model on a compact simple and simply connected target Lie group. We show that the commutation relations of the q → ∞ current algebra are underlied by certain affine Poisson structure on the group of holomorphic maps from the disc into the complexification of the target group. The Lie algebroid corresponding to this affine Poisson structure can be integrated to a global symplectic groupoid which turns out to be nothing but the phase space of the q → ∞ limit of the q-WZW model. We also show that this symplectic grupoid admits a chiral decomposition compatible with its (anomalous) Poisson-Lie symmetries. Finally, we dualize the chiral theory in a remarkable way and we evaluate the exchange relations for the q → ∞ chiral WZW fields in both the original and the dual pictures.  相似文献   

18.
Gaudin model is a very important integrable model in both quantum field theory and condensed matter physics. The integrability of Gaudin models is related to classical r-matrices of simple Lie algebras and semi-simple Lie algebra. Since most of the constructions of Gaudin models works concerned mainly on rational and trigonometric Gaudin algebras or just in a particular Lie algebra as an alternative to the matrix entry calculations often presented, in this paper we give our calculations in terms of a basis of the typical Lie algebra, A n , B n , C n , D n , and we calculate a classical r-matrix for the elliptic Gaudin system with spin.   相似文献   

19.
We present an axiomatic formulation of a new class of infinitedimensional Lie algebras-the generalizations ofZ-graded Lie algebras with, generally speaking, an infinite-dimensional Cartan subalgebra and a contiguous set of roots. We call such algebras continuum Lie algebras. The simple Lie algebras of constant growth are encapsulated in our formulation. We pay particular attention to the case when the local algebra is parametrized by a commutative algebra while the Cartan operator (the generalization of the Cartan matrix) is a linear operator. Special examples of these algebras are the Kac-Moody algebras, algebras of Poisson brackets, algebras of vector fields on a manifold, current algebras, and algebras with differential or integro-differential cartan operator. The nonlinear dynamical systems associated with the continuum contragredient Lie algebras are also considered.  相似文献   

20.
《Physics letters. A》2001,282(3):163-168
We use the Hamiltonian formalism to investigate the Katzin–Levine model of a time-dependent Kepler problem. This formalism enables us to define Lie products in terms of Poisson brackets and obtain a time-dependent realization of centerless twisted (or standard) Kac–Moody algebras of so(N+1). We also show that the classical solutions of the model are modulated conic sections and derive a generalized Kepler equation for the time dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号