首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李百文  IshiguroS  SkoricMM 《中国物理》2006,15(9):2046-2052
This paper shows that the standing, backward- and forward-accelerated large amplitude relativistic electromagnetic solitons induced by intense laser pulse in long underdense collisionless homogeneous plasmas can be observed by particle simulations. In addition to the inhomogeneity of the plasma density, the acceleration of the solitons also depends upon not only the laser amplitude but also the plasma length. The electromagnetic frequency of the solitons is between about half and one of the unperturbed electron plasma frequency. The electrostatic field inside the soliton has a one-cycle structure in space, while the transverse electric and magnetic fields have half-cycle and one-cycle structure respectively. Analytical estimates for the existence of the solitons and their electromagnetic frequencies qualitatively coincide with our simulation results.  相似文献   

2.
We study the angular distribution of relativistic electrons generated through laser-plasma interaction with pulse intensity varying from 10(18) W/cm2 up to 10(21) W/cm2 and plasma density ranging from 10 times up to 160 times critical density with the help of 2D and 3D particle-in-cell simulations. This study gives clear evidence that the divergence of the beam is an intrinsic property of the interaction of a laser pulse with a sharp density gradient. It is entirely due to the excitation of large static magnetic fields in the layer of interaction. The energy deposited in this layer increases drastically the temperature of the plasma independently of the initial temperature. This makes the plasma locally collisionless and the simulation relevant for the current experiments.  相似文献   

3.
Based on computer simulation, we demonstrate the possibility of formation of solitons upon propagation of a femtosecond laser pulse in a medium containing gold nanoparticles in the presence of two-photon light absorption. The solitons are formed when the laser pulse induces a positive phase grating. The speed of solitons substantially exceeds the speed of laser radiation propagating in a linear medium.  相似文献   

4.
The interaction of intense, ultra-short laser pulses (USLP) with a surface of transparent dielectrics is considered. The combination of multi-photon absorption and impact ionization generates a plasma layer at the dielectric boundary. Interaction with the plasma self-consistently determines the amount of reflected, transmitted and absorbed light, and the spatial distribution of electron density. In the present paper, we model the interaction of USLP with transparent dielectrics. We calculate the evolution of electron density profiles and the variation of reflection, transmission and absorption of laser radiation during the pulse. We show that the laser-created surface plasma acts as a filter transmitting only the leading edge of the laser pulse. The transmitted energy is approximately fixed, nearly independent of input pulse energy. The transmitted energy increases with pulse duration. This increased energy is manifested in the formation of cylindrical shock waves directly applicable to recent experiments investigating absorption and shock generation in water. PACS 79.20.Ds; 81.15.Fg; 05.45.Pg  相似文献   

5.
6.
7.
8.
A set of exact one-dimensional solutions to coupled nonlinear equations describing the propagation of a relativistic ultrashort circularly polarized laser pulse in a cold collisionless and bounded plasma where electrons have an initial velocity in the laser propagating direction is presented. The solutions investigated here are in the form of quickly moving envelop solitons at a propagation velocity comparable to the light speed. The features of solitons in both underdense and overdense plasmas with electrons having different given initial velocities in the laser propagating direction are described. It is found that the amplitude of solitons is larger and soliton width shorter in plasmas where electrons have a larger initial velocity. In overdense plasmas, soliton duration is shorter, the amplitude higher than that in underdense plasmas where electrons have the same initial velocity.  相似文献   

9.
李百文  郑春阳  宋敏  刘占军 《物理学报》2006,55(10):5325-5337
应用一维相对论电磁粒子模拟程序,详细研究了线性极化强激光入射到无碰撞稀疏密度长等离子体中引起的受激Raman散射、Raman级联散射、级联散射到光子凝聚、以及大振幅电磁孤立子的产生与加速. 通过研究发现:在适当的激光振幅和等离子体状态下,强的光子凝聚现象会导致大振幅电磁孤立子的产生,电磁孤立子可以以静止、向后以及向前加速的形式存在;在密度均匀的等离子体中,电磁孤立子的加速不仅依赖于激光振幅而且依赖于等离子体的长度;电磁孤立子的电磁频率大约为未扰动电子等离子体振荡频率的二分之一左右,孤立子内电磁场的电场具有半周期结构,相应电磁场的磁场以及静电场则具有一个完整的周期结构. 关键词: 粒子模拟 受激Raman散射 Raman级联散射 光子凝聚 电磁孤立子  相似文献   

10.
The patterns of absorption and reflection of an ultrashort laser pulse by a plasma with a solid-state density, which are realized in the mode of the normal skin effect, are studied. It is shown that a decrease in low-power pulse duration shorter than the period corresponding to the fundamental frequency of radiation leads to an increase in the absorption coefficient. If the pulse power is so high as to provide electron heating during a time shorter than the reciprocal fundamental frequency, nonlinear suppression of absorption takes place and the spectrum of the reflected radiation contains odd harmonics of the fundamental frequency.  相似文献   

11.
12.
When a short high power laser pulse interacts with a transparent solid target in vacuum, radiation in the rising edge of the pulse can self-focus in the solid and cause “damage tracks”. The self-focusing stage of the laser/solid interaction has been studied, a method has been found to suppress the “damage tracks”, and information about the penetration of laser radiation through the critical layer of plasma, in the early stages of the interaction, has been obtained.  相似文献   

13.
 通过分析不同情况下激光与固态靶、气化物质的作用机理,利用激光体烧蚀模型,采用流体力学理论和1维Lagrange有限差分的计算方法,对真空条件下不同激光参数下气化物质对靶产生冲量的过程进行了数值模拟,模拟计算结果与实验测量结果、Phipps定标关系符合较好。计算结果表明,在等离子体的情况下冲量耦合系数随着激光强度增大而减小。  相似文献   

14.
We present a study of the effect of laser pulse temporal profile on the energy /momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressure-dominant (RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a high-energy plasma provide matching conditions that make it possible to exchange very effectively ordered kinetic energy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativistic case it approaches one. The momentum /energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse can accelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.  相似文献   

15.
The appearance of a density bump is experimentally revealed in an electrostatic shock wave during the ablation of an aluminum foil by a femtosecond laser pulse. The numerical simulation shows that this phenomenon can be explained by the generation of a packet of ion acoustic waves under the action of high-energy electron flows in a collisionless plasma. It is found that, for the formation and maintenance of the dense plasma layer in the shock wave, the contributions of accelerated ions overtaking it and wave-captured ions of the background plasma formed by a nanosecond laser prepulse in the process of ablation are significant.  相似文献   

16.
李悰  张培  姜利英  陈青华  闫艳霞  姜素霞 《发光学报》2016,37(10):1217-1222
采用等离子体增强化学气相沉积和后退火的方法制备了纳米锗/氮化硅(nc-Ge/SiN_x)多层薄膜。借助Raman光谱仪对其微结构进行表征,测得样品的晶化率大于46%。由样品的光吸收谱可知,nc-Ge的尺寸越小,其光学带隙越大。利用Z扫描技术对样品的非线性光学特性进行研究,以波长为1 064 nm、脉宽为25 ps的锁模激光作为激发光,测得样品的非线性折射率系数在10~(-10)cm~2/W数量级。实验结果表明,通过改变nc-Ge的尺寸可以使材料的非线性光学折射率由自散焦转变为自聚焦特性,而负的非线性折射率系数可归因于两步吸收产生的自由载流子散射效应。当激发光强增大时,在锗层厚度为6 nm的多层膜中同时存在两步吸收过程和饱和吸收过程。两种非线性光学吸收过程之间的竞争是样品呈现不同非线性光学特性的主要原因。  相似文献   

17.
马国彬  谭维翰 《光学学报》1995,15(3):05-312
通过数据求解亥姆霍兹波动方程,研究了激光辐射薄膜靶产生的不同厚度、不同标尺长度的薄层等离子体对激光的反射,透射及吸收(逆轫致吸收,共振吸收)率随入射角的变化情况,小角度入射时,短脉冲(~ps量级)激光打靶产生的标尺长度较小的等离子体对激光的吸收率比长脉冲打靶时低,但在大角度入射时,短脉冲打靶时等离子体的吸收率反而比长脉冲打靶时高。  相似文献   

18.
This article investigates nonlinear self-focusing of an intense right hand circularly polarized Gaussian profile laser pulse in a weakly relativistic and ponderomotive regime inside a collisionless and unmagnetized warm quantum plasma. The nonlinear propagation equation for laser pulse in plasma has been derived. Then, the evolution differential equation for laser spot-size was obtained with considering the parabolic equation approach under the Wentzel-Kramers-Brillouin and paraxial ray approximations. This differential equation was solved numerically by fourth-order Runge-Kutta method. It is shown that our solution confirms the results of the self-focusing of the laser pulse in a weakly relativistic ponderomotive regime in cold quantum plasma in extreme conditions. Numerical results indicate that self-focusing of the laser pulse in the presence of relativistic and ponderomotive nonlinearity inside warm quantum plasma is improved in comparison with relativistic and ponderomotive cold quantum plasma.  相似文献   

19.
Preparation of organic thin layers on various special substrates using the pulsed laser deposition (PLD) technique is an important task from the point of view of bioengineering and biosensor technologies. Earlier studies demonstrated that particle ejection starts during the ablating laser pulse resulting in significant shielding effects which can influence the real fluence on the target surface and consequently the efficiency of layer preparation. In this study, we introduce a photoacoustic absorption measurement technique for in-situ characterization of ablated particles during PLD experiments. A KrF excimer laser beam (λ=248 nm, FWHM=18 ns) was focused onto pepsin targets in a PLD chamber; the applied laser fluences were 440 and 660 mJ/cm2. We determined the wavelength dependence of optical absorption and mass specific absorption coefficient of laser ablation generated pepsin aerosols in the UV–VIS–NIR range. On the basis of our measurements, we calculated the absorbance at the ablating laser wavelength, too. We demonstrated that when the laser ablation generated pepsin aerosols spread through the whole PLD chamber the effect of absorptivity is negligible for the subsequent pulses. However, the interaction of the laser pulse and the just formed particle cloud generated by the same pulse is more significant.  相似文献   

20.
Multiple scattering of electromagnetic waves by a plane layer of a turbulent magnetized collision plasma is considered. The influence of the distance between both the emitter and the receiver and the layer boundaries is analysed. It is found that the width of the angular spectrum of the received radiation for sufficiently strong absorption in the plasma is greater than in the collisionless plasma; the spectral maximum is substantially displaced with respect to the direction of the source. It is shown that these effects are weakened when the emitter approaches the layer. The relationship between the spectral width and also the displacement of its maximum and the distance from the receiver to the layer boundary may be substantially non-monotonic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号