首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 756 毫秒
1.
We developed a new monotone finite volume method for diffusion equations. The second-order linear methods, such as the multipoint flux approximation, mixed finite element and mimetic finite difference methods, are not monotone on strongly anisotropic meshes or for diffusion problems with strongly anisotropic coefficients. The finite volume (FV) method with linear two-point flux approximation is monotone but not even first-order accurate in these cases. The developed monotone method is based on a nonlinear two-point flux approximation. It does not require any interpolation scheme and thus differs from other nonlinear finite volume methods based on a two-point flux approximation. The second-order convergence rate is verified with numerical experiments.  相似文献   

2.
The concern of the present work is the introduction of a very efficient asymptotic preserving scheme for the resolution of highly anisotropic diffusion equations. The characteristic features of this scheme are the uniform convergence with respect to the anisotropy parameter 0 < ε ? 1, the applicability (on cartesian grids) to cases of non-uniform and non-aligned anisotropy fields b and the simple extension to the case of a non-constant anisotropy intensity 1/ε. The mathematical approach and the numerical scheme are different from those presented in the previous work [P. Degond, F. Deluzet, A. Lozinski, J. Narski, C. Negulescu, Duality-based asymptotic-preserving method for highly anisotropic diffusion equations, Communications in Mathematical Sciences 10 (1) (2012) 1–31] and its considerable advantages are pointed out.  相似文献   

3.
针对结构自适应加密网格(SAMR)上扩散方程的求解,分析几种有限体格式的逼近性,同时设计和分析一种两层网格算法.首先,讨论一种常见的守恒型有限体格式,并给出网格加密区域和细化/粗化插值算子的条件;接着,通过在粗细界面附近引入辅助三角形单元,消除粗细界面处的非协调单元,设计了一种保对称有限体元(SFVE)格式,分析表明,该格式具有更好的逼近性,且对网格加密区域和插值算子的限制更弱;最后,为SFVE格式构造一种两层网格(TL)算法,理论分析和数值实验表明该算法的一致收敛性.  相似文献   

4.
The general form of the anisotropy parameter of the expansion for Bianchi type-III metric is obtained in the presence of a single diagonal imperfect fluid with a dynamically anisotropic equation of state parameter and a dynamical energy density in general relativity. A special law is assumed for the anisotropy of the fluid which reduces the anisotropy parameter of the expansion to a simple form (D μ H-2V-2{\Delta\propto H^{-2}V^{-2}}, where Δ is the anisotropy parameter, H is the mean Hubble parameter and V is the volume of the universe). The exact solutions of the Einstein field equations, under the assumption on the anisotropy of the fluid, are obtained for exponential and power-law volumetric expansions. The isotropy of the fluid, space and expansion are examined. It is observed that the universe can approach to isotropy monotonically even in the presence of an anisotropic fluid. The anisotropy of the fluid also isotropizes at later times for accelerating models and evolves into the well-known cosmological constant in the model for exponential volumetric expansion.  相似文献   

5.
Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral angles are now measured in a metric depending on the diffusion matrix of the underlying problem. Several variants of the new condition are obtained. Based on one of them, two metric tensors for use in anisotropic mesh generation are developed to account for DMP satisfaction and the combination of DMP satisfaction and mesh adaptivity. Numerical examples are given to demonstrate the features of the linear finite element method for anisotropic meshes generated with the metric tensors.  相似文献   

6.
It is well known that the two-point flux approximation, a numerical scheme used in most commercial reservoir simulators, has O(1) error when grids are not K-orthogonal. In the last decade, the multi-point flux approximations have been developed as a remedy. However, non-physical oscillations can appear when the anisotropy is really strong. We found out the oscillations are closely related to the poor approximation of pressure gradient in the flux computation.In this paper, we propose the control volume enriched multi-point flux approximation (EMPFA) for general diffusion problems on polygonal and polyhedral meshes. Non-physical oscillations are not observed for realistic and strongly anisotropic heterogeneous material properties described by a full tensor. Exact linear solutions are recovered for grids with non-planar interfaces, and a first and second order convergence are achieved for the flux and scalar unknowns, respectively.  相似文献   

7.
Based on the measurement of cross-correlation rates between 15N CSA and 15N–1H dipole–dipole relaxation we propose a procedure for separating exchange contributions to transverse relaxation rates (R2 = 1/T2) from effects caused by anisotropic rotational diffusion of the protein molecule. This approach determines the influence of anisotropy and chemical exchange processes independently and therefore circumvents difficulties associated with the currently standard use of T1/T2 ratios to determine the rotational diffusion tensor. We find from computer simulations that, in the presence of even small amounts of internal flexibility, fitting T1/T2 ratios tends to underestimate the anisotropy of overall tumbling. An additional problem exists when the N–H bond vector directions are not distributed homogeneously over the surface of a unit sphere, such as in helix bundles or β-sheets. Such a case was found in segment 4 of the gelation factor (ABP 120), an F-actin cross-linking protein, in which the diffusion tensor cannot be calculated from T1/T2 ratios. The 15N CSA tensor of the residues for this β-sheet protein was found to vary even within secondary structure elements. The use of a common value for the whole protein molecule therefore might be an oversimplification. Using our approach it is immediately apparent that no exchange broadening exists for segment 4 although strongly reduced T2 relaxation times for several residues could be mistaken as indications for exchange processes.  相似文献   

8.
Experimentsthat selectively excite I = nuclei exhibiting residual quadrupolar splittings are used to acquire 23Na NMR spectra from a range of biologically relevant samples containing sodium in ordered environments. Three complementary approaches to the analysis of such spectra are described: (i) measurement of relaxation rates, (ii) extraction of homogeneous linewidths from two-dimensional Jeener–Broekaert spectra, and (iii) simultaneous fitting of detailed theoretical functions to a series of one-dimensional Jeener–Broekaert spectra. Analysis of relaxation rates provides evidence for compartmentation in bovine nasal cartilage. Each approach is used to demonstrate the presence of anisotropy in transverse relaxation in porcine tendon. For certain samples containing collagen, a good theoretical fit to the spectra was obtained using a model that allows for anisotropic relaxation by including the effects of slow lateral and radial diffusion.  相似文献   

9.
The quantum, antiferromagnetic, spin-1/2 Heisenberg Hamiltonian on thed-dimensional cubic lattice d is considered for any dimensiond. First the anisotropic case is considered for small transversal coupling and a convergent expansion is given for a family of eigenprojections which is complete in all finite-volume truncations. Then the general case is considered, for which an upper bound to the ground-state energy is given which is optimal for strong enough anisotropy. This bound is expressed through a functional involving the statistical expectation value at finite temperature of a certain correlation function of an Ising model defined on the lattice d itself.  相似文献   

10.
We present a new algorithm for combining an anisotropic goal-oriented error estimate with the mesh adaptation fixed point method for unsteady problems. The minimization of the error on a functional provides both the density and the anisotropy (stretching) of the optimal mesh. They are expressed in terms of state and adjoint. This method is used for specifying the mesh for a time sub-interval. A global fixed point iterates the re-evaluation of meshes and states over the whole time interval until convergence of the space–time mesh. Applications to unsteady blast-wave and acoustic-wave Euler flows are presented.  相似文献   

11.
In this paper an improved finite volume scheme to discretize diffusive flux on a non-orthogonal mesh is proposed. This approach, based on an iterative technique initially suggested by Khosla [P.K. Khosla, S.G. Rubin, A diagonally dominant second-order accurate implicit scheme, Computers and Fluids 2 (1974) 207–209] and known as deferred correction, has been intensively utilized by Muzaferija [S. Muzaferija, Adaptative finite volume method for flow prediction using unstructured meshes and multigrid approach, Ph.D. Thesis, Imperial College, 1994] and later Fergizer and Peric [J.H. Fergizer, M. Peric, Computational Methods for Fluid Dynamics, Springer, 2002] to deal with the non-orthogonality of the control volumes. Using a more suitable decomposition of the normal gradient, our scheme gives accurate solutions in geometries where the basic idea of Muzaferija fails. First the performances of both schemes are compared for a Poisson problem solved in quadrangular domains where control volumes are increasingly skewed in order to test their robustness and efficiency. It is shown that convergence properties and the accuracy order of the solution are not degraded even on extremely skewed mesh. Next, the very stable behavior of the method is successfully demonstrated on a randomly distorted grid as well as on an anisotropically distorted one. Finally we compare the solution obtained for quadrilateral control volumes to the ones obtained with a finite element code and with an unstructured version of our finite volume code for triangular control volumes. No differences can be observed between the different solutions, which demonstrates the effectiveness of our approach.  相似文献   

12.
We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection–dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.  相似文献   

13.
A series of new experiments has been performed to determine the origin of the uniaxial anisotropy in Permalloy films. By means of a double magnetic shield enclosing the vacuum system, it was possible to deposit films in extremely small ambient fields (10–6 to 10–3 oersted). It was found that for deposition field strengths higher than about 10–1 oersted, the anisotropy constant and the squareness of the hysteresis loop are essentially invariant with respect to the value of the deposition field. However, forH d <10–1 oersted, both the anisotropy and squareness of the loop decreases dramatically. From these experimental results, it appears that both the anisotropic Fe-pair orientation and anisotropic imperfection-alignment are deposition-field induced.  相似文献   

14.
Various approaches to extend finite element methods to non-traditional elements (general polygons, pyramids, polyhedra, etc.) have been developed over the last decade. The construction of basis functions for such elements is a challenging task and may require extensive geometrical analysis. The mimetic finite difference (MFD) method works on general polygonal meshes and has many similarities with low-order finite element methods. Both schemes try to preserve the fundamental properties of the underlying physical and mathematical models. The essential difference between the two schemes is that the MFD method uses only the surface representation of discrete unknowns to build the stiffness and mass matrices. Since no extension of basis functions inside the mesh elements is required, practical implementation of the MFD method is simple for polygonal meshes that may include degenerate and non-convex elements. In this article, we present a new MFD method for the Stokes problem on arbitrary polygonal meshes and analyze its stability. The method is developed for the general case of tensor coefficients, which allows us to apply it to a linear elasticity problem, as well. Numerical experiments show, for the velocity variable, second-order convergence in a discrete L2 norm and first-order convergence in a discrete H1 norm. For the pressure variable, first-order convergence is shown in the L2 norm.  相似文献   

15.
An algorithm is presented for solving a diffusion equation on a curved surface coupled to diffusion in the volume, a problem often arising in cell biology. It applies to pixilated surfaces obtained from experimental images and performs at low computational cost. In the method, the Laplace-Beltrami operator is approximated locally by the Laplacian on the tangential plane and then a finite volume discretization scheme based on a Voronoi decomposition is applied. Convergence studies show that mass conservation built in the discretization scheme and cancellation of sampling error ensure convergence of the solution in space with an order between 1 and 2. The method is applied to a cell-biological problem where a signaling molecule, G-protein Rac, cycles between the cytoplasm and cell membrane thus coupling its diffusion in the membrane to that in the cell interior. Simulations on realistic cell geometry are performed to validate, and determine the accuracy of, a recently proposed simplified quantitative analysis of fluorescence loss in photobleaching. The method is implemented within the Virtual Cell computational framework freely accessible at www.vcell.org.  相似文献   

16.
从积分形式的二维Lagrange流体力学方程组出发,使用ENO高阶插值多项式,推广了四边形结构网格下的一阶有限体积格式,构造一类结构网格下的高精度有限体积格式.结合有效的守恒重映方法,发展一类高精度的ALE方法,并结合自适应运动网格技术,进行ALE方法的数值模拟,得到预期的效果.  相似文献   

17.
We study diffusion in lattices with periodic and random arrangements of anisotropic scatterers. We show, using both analytical techniques based upon our previous work on asymptotic properties of multistate random walks and computer calculation, that the diffusion constant for the random arrangement of scatterers is bounded above and below at an arbitrary density by the diffusion constant for an appropriately chosen periodic arrangement of scatterers at the same density. We also investigate the accuracy of the low-density expansion for the diffusion constant up to second order in the density for a lattice with randomly distributed anisotropic scatterers. Comparison of the analytical results with numerical calculations shows that the accuracy of the density expansion depends crucially on the degree of anisotropy of the scatterers. Finally, we discuss a monotonicity law for the diffusion constant with respect to variation of the transition rates, in analogy with the Rayleigh monotonicity law for the effective resistance of electric networks. As an immediate corollary we obtain that the diffusion constant, averaged over all realizations of the random arrangement of anisotropic scatterers at density, is a monotone function of the density.  相似文献   

18.
The intermolecular partial wave expansion of the atom-atom potential U is reviewed briefly and developed, by using results due to Sack, so that the radial components of the expansion can be evaluated to arbitrary accuracy for all relevant partial wave orders and values of the intermolecular distance r. These results are used to study the convergence of the partial wave expansion of U as a function of partial wave order, r, intermolecular orientation, and the anisotropy of the interacting molecules. In marked contrast to previous work it is found that many of the higher order partial wave components of U are important relative to the isotropic term even for the interaction of relatively spherical molecules and that the results obtained from a truncated partial wave expansion depend significantly upon the method of summation due to the generally poor convergence of the expansion. The validity of the atom-atom potential as a representation of the correct attractive intermolecular potential is also discussed in some detail. There are basic problems associated with the representations furnished by both the isotropic and the anisotropic parts of the atom-atom potential at intermediate and large r. The different convergence properties of the r -1 expansions of the partial wave expansions of U and of the correct potential for these values of r is illustrated by using model interactions. While it appears that it may be possible to obtain a qualitatively reasonable representation of the attractive part of an intermolecular potential over a useful range of r from atom-atom results, this apparently cannot be achieved for wider ranges of r or for the purely anisotropic part of the potential.  相似文献   

19.
周建美  张烨  汪宏年  杨守文  殷长春 《物理学报》2014,63(15):159101-159101
本文基于电场矢势与标势分解的耦合势有限体积法研究建立一套各向异性地层中海洋可控源电磁法的三维响应的高效数值模拟技术.首先引入电场的矢势和标势,将电场分解为无散场和无旋场之和,Maxwell方程转换为关于矢势与标势的混合Helmholtz方程,克服低感应数问题.在此基础上,借助Yee氏交错网格和有限体积法以及非均质单元中等效电导率公式,建立混合Helmholtz方程的离散方程.并采用直接法求解器PARDISO求解离散方程,有效保证在大的求解空间中仍然能够获得电磁场稳定可靠的数值解.此外,在数值模拟中利用差异场技术,克服源的奇异性问题,尽可能提高近场的计算精度.与解析解的对比证明了该算法的有效性.数值模拟结果表明,海洋可控源电磁法沿测线方向的电场,对油气藏的纵向电阻率敏感,对横向电阻率不敏感;对油气藏上方的覆盖层的纵向电阻率和横向电阻率都敏感.  相似文献   

20.
A new frequency-domain electromagnetics algorithm is developed for simulating curved interfaces between anisotropic dielectrics embedded in a Yee mesh with second-order error in resonant frequencies. The algorithm is systematically derived using the finite integration formulation of Maxwell’s equations on the Yee mesh. Second-order convergence of the error in resonant frequencies is achieved by guaranteeing first-order error on dielectric boundaries and second-order error in bulk (possibly anisotropic) regions. Convergence studies, conducted for an analytically solvable problem and for a photonic crystal of ellipsoids with anisotropic dielectric constant, both show second-order convergence of frequency error; the convergence is sufficiently smooth that Richardson extrapolation yields roughly third-order convergence. The convergence of electric fields near the dielectric interface for the analytic problem is also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号