首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The UV absorption spectra of rhodamine B and G molecules isolated from industrial dye samples were obtained. Two procedures were used. In one of them, rhodamine B molecules were displaced with water into a heptane layer from a solution of the dye in an alcohol-heptane mixture. The second procedure involved heating of the dye introduced into cellulose triacetate films. Individual rhodamine molecules (namely, dye cation-chlorine anion ion pairs) prepared by both methods did not absorb visible light. The spectra of individual rhodamine molecules coincided with the spectra of so-called pseudoleucobases of xanthene dyes reported in the literature. The conclusion was drawn that the chromaticity property in the series of xanthene dyes appeared because of the formation of supramolecular dimeric and larger aggregates, as was earlier established for triphenylmethane dyes (TPMDs) and copper phthalocyanine (CuPc). At the same time, individual xanthene dye molecules, like TPMD and CuPc molecules, are not chromogens.  相似文献   

2.
The sorption of basic dyes (methylene blue, malachite green, rhodamine B, crystal violet) onto a nonconventional organomineral sorbent-iron humate-was examined in the presence of various kinds of surfactants. It was found that nonionic (Triton X-100) and cationic (cetyltrimethylammonium bromide) surfactants exhibited a relatively small effect on the dye sorption. Anionic surfactants (sodium dodecyl sulfate), on the other hand, affected (in most cases) dramatically the sorption of basic (cationic) dyes. Typically, the dye sorption was enhanced in the presence of low concentrations of anionic surfactants. At high surfactant concentrations, a steep decrease in the dye sorption was observed in some systems, probably due to the formation of micelles that solubilize the dye molecules and prevent their sorption. A model describing these experimental dependencies was proposed. The sorption of basic dyes onto iron humate may be described by the pseudo-second-order kinetic equation. Diffusion processes were identified as the main mechanisms controlling the rate of the dye sorption.  相似文献   

3.
The determination of the age of an ink entry from a questioned document is often a major problem and a controversial issue in forensic sciences. Therefore, it is important to understand the aging process of the different components found in ink. The aim of this work is to characterize the degradation processes of methyl violet and ethyl violet, two typical ballpoint dyes by using laser desorption/ionization (LDI) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS), and to evaluate the possible application of the method to forensic examination of documents. The mass spectrometric methods were first tested and were found to be adequate for the purpose of this work. Moreover, it is possible to analyze the dye from a stroke directly from the paper (LDI-MS), so the sample preparation is minimized. The degradation of the dyes methyl violet and ethyl violet in strokes from a ballpoint pen was studied under laboratory conditions influenced by different factors such as light, wavelength of light, heat, and humidity. Then, strokes from the same ballpoint were aged naturally in the dark or under the influence of light over one year and then analyzed. The results show that the degradation of these dyes strongly depends on light fluence. Humidity also increases degradation, which can be explained by the basicity of the paper. The influence of heat on the degradation process was found to be rather weak. It was also observed that the dyes from the ink strokes did not show significant degradation after one year of storage in the dark. In conclusion, the storage conditions of a questioned document and the initial composition of the dyes in the ink have to be known for correct interpretation of the age of an ink entry. Measurements over longer periods of time are necessary to follow the degradation of dyes exempt from light exposure. LDI was found adequate and very useful for the analysis of ballpoint dyes directly from paper without further pretreatment.  相似文献   

4.
An extensive bibliography on the determination of boron by means of tetrafluoroborate-dye complexes is given. The stability constants of the fluoroborate—dye complexes are calculated from potentiometric measurements with an Orion fluoroborate ion-selective electrode, for the following nineteen dyes: methylene blue, methylene green, new methylene blue N, thionine, toluidine blue O, malachite green, brilliant green, crystal violet, fuchsine, methyl green, methyl violet, Victoria blue B, brilliant cresyl blue, Nile blue A, rhodamine B, rhodamine 6G, pyronine Y, safranine T and Janus green B. The solubilities of these dyes have been determined by spectrophotometry.  相似文献   

5.
Eight textile dye compounds including five cationic dyes, namely, basic blue 41, basic blue 9, basic green 4, basic violet 16 and basic violet 3, and three anionic dyes, acid green 25, acid red 1 and acid blue 324, were separated and detected by non-aqueous capillary electrophoresis (NACE) with electrochemical detection. Simultaneous separations of acid and basic dyes were performed using an acetonitrile-based buffer. Particular attention was paid to the determination of basic textile dyes. The optimized electrophoresis buffer for the separation of basic dyes was a solvent mixture of acetonitrile/methanol (75:25, v/v) containing 1 M acetic acid and 10 mM sodium acetate. The limits of detection for the basic dyes were in the range of 0.1–0.7 μg mL−1. An appropriate solid-phase extraction procedure was developed for the pre-treatment of aqueous samples with different matrices. This analytical approach was successfully applied to various water samples including river and lake water which were spiked with textile dyes.  相似文献   

6.
羧基化石墨烯对4种离子型染料的吸附脱色   总被引:1,自引:0,他引:1  
吕莎莎  危晶  江峰  王邃 《应用化学》2013,30(10):1215-1221
合成的羧基化石墨烯(G-COOH)用FT-IR进行表征,并对G-COOH用于水溶液中甲基紫、中性红、灿烂黄和茜素红4种离子型染料的吸附性能进行了研究。 考察了吸附剂用量、吸附时间、初始浓度以及溶液pH值等条件对吸附效果的影响。 同时,研究了甲基紫染料的脱附性能,结果表明,用NaOH/EtOH混合溶液洗脱甲基紫,洗脱率可达88.2%,洗脱后的G-COOH可再利用。 从热力学角度探讨得出,G-COOH对阳离子染料甲基紫和中性红的吸附行为能够较好的符合Langmuir等温吸附模型,而对阴离子染料灿烂黄和茜素红的吸附行为则能够较好的符合Freundlich等温吸附模型,计算的吸附参数表明,G-COOH对4种染料的吸附过程容易进行。 动力学研究表明,G-COOH对4种离子型染料的吸附行为均能较好的符合准二级吸附模型。 该实验研究表明,在处理染料废水时,G-COOH为相当优异的吸附剂。  相似文献   

7.
Luminescent silica nanotubes SNT-2 (loaded with coumarion laser dye 2) and SNT-3 (loaded with anthracene laser dye 3) were prepared by sol-gel cocondensation of functional dyes and TEOS in a cholesterol-based organogel system. The emission colors of silica nanotubes were tuned by using different functional dyes. Interestingly, there is a great difference in PL spectrum of silica nanotubes loaded with functional dyes between ethanol and the solid state. In ethanol, a green light emission of SNT-2 and a bluish green light emission of SNT-3 were observed at 486 and 465 nm, respectively, because of the anchoring state between the dye and the tube, whereas in the solid state, strong blue light emissions of SNT-2 and SNT-3 were observed at 482 and 483 nm, respectively, because of the intense emission of the silica nanotube (SNT) itself rather than that of 2 and 3.  相似文献   

8.
A method for the removal of anionic (sulfonated) dyes from aqueous dye solutions using the chemical interaction of dye molecules with polyaniline is reported. Polyaniline (PANI) emeraldine salt was synthesized by chemical oxidation. Sulfonated dyes undergo chemical interactions with the charged backbone of PANI, leading to significant adsorption of the dyes. This phenomenon of selective adsorption of the dyes by PANI is reported for the first time and promises a green method for removal of sulfonated organics from wastewater. The experimental observations from UV-vis spectroscopy, X-ray diffraction, and conductivity measurements rule out the possibility of secondary doping of polyaniline salt by sulfonated dye molecules. A possible mechanism for the chemical interaction between the polymer and the sulfonated dye molecules is proposed. The kinetic parameters for the adsorption of sulfonated dyes on PANI are also reported.  相似文献   

9.
The reaction of disodium cromoglycale with five cationic dyes: crystal violet, Janus green, methylene blue, methyl green, and safranine, was investigated. Spectroscopic shifts indicated that at low concentration (0.01 mM) all these dyes were able to form complexes (ion paris) with the cromoglycale anion. In addition, the complexes formed by crystal violet and Janus green were extractable into chloroform.  相似文献   

10.
A terpyridine-based organic-inorganic hybrid gelator possessing triethoxylsilane moiety was synthesized and its adsorption capacity for aromatic dyes in the absence and the presence of metal ions such as Zn2+ and Cu2+ was measured by UV-vis spectroscopy. From aqueous solutions of dyes, the hybrid gel, in the absence of metal ions, adsorbed 97.4% for basic blue 41, 94.2% for crystal violet, and 41.5% for bromocresol green. When metal ion was present, the adsorption capacity of dried hybrid gel 1 for the anionic dye bromocresol green significantly increased due to the enhanced electrostatic interaction between cationic gel and anionic dye. Thus, this hybrid gel can efficiently adsorb various toxic dyes in water.  相似文献   

11.
《Chemical physics letters》1986,129(4):403-406
At 0.23 M, the superficial layer of a solution of malachite green hydroxide or of brilliant green hydroxide in hydroxy-propionitrile consists entirely of the dye (as measured by He (I) photoelectron spectroscopy). This surface activity is weak or non-existent in the chloride and oxalate of malachite green, in some related dyes like brilliant green bisulphate and in the hydroxides and salts of both p-rosaniline and crystal violet.  相似文献   

12.
Rotational diffusion data from pulsed laser experiments are presented for dye molecules dissolved in alcohols and non-alcohols. Cresyl violet and fluorescein both exhibit strong dependence of the rotational motion upon solvent molecular structure. In complete contrast the rotational diffusion of the oblong dyes pyronine G and acridine orange do not reveal any specific solute-solvent interaction.  相似文献   

13.
孔雀石绿(MG)和结晶紫(CV)具有抗菌等活性,常被违法用于水产养殖业。但MG、CV及其代谢产物隐色孔雀石绿(LMG)、隐色结晶紫(LCV)具有致癌性。所以水产品中染料的残留检测是食品安全分析的重要问题。由于水产品基质复杂,样品前处理尤为重要。本文发展了一种基于QuEChERS技术与高效液相色谱联用的方法,用于鱼肉中4种染料的同时检测。对QuEChERS方法中提取剂体积、提取次数以及分散固相萃取材料进行了优化。结果表明反相/强阴离子交换材料(C18SAX)能有效提高回收率。在最优条件下,4种染料在0.5~100 mg/L范围内线性良好,相关系数均大于0.998。该方法在鱼肉中的回收率为73%~91%,RSD为0.66%~5.41%。结果表明该方法简单、高效,适合于鱼肉中染料的快速检测。  相似文献   

14.
Abstract— Electron paramagnetic resonance spectra of the triplet states of several triphenylmethane dyes in glassy solutions at 90 K have been measured and their zero-field splitting parameters estimated. Crystal violet and para rosaniline do not possess trigonal symmetry in their triplet states, and the unusually broad absorptions in the Δ M 8= 1 region of the spectra have been attributed to the presence of different rotational isomers of the dye cations. A number of malachite green derivatives were investigated, but absorption of the triplet states of these dyes was only observed in the low field Δ M 8= 2 region of the spectrum.  相似文献   

15.
In‐situ extraction and condensation of various dyes were carried out in a phase‐separation region of a thermoresponsive polymer aqueous solution generated by near infrared (NIR) laser heating under a microscope. The NIR laser irradiation was directed at a chromium line deposited on a glass substrate, thereby causing local heating of the solution due to the photothermal effect. A phase‐separation region was formed by dehydration of the thermoresponsive polymer followed by ejection of water outside of the phase‐separation region. When various dyes were included in the solution, some dye molecules were extracted into the phase‐separation region, where they condensed. In the case of poly(N‐isopropylacrylamide) (PNIPAM, 10 wt % in an aqueous solution) as the thermoresponsive polymer and crystal violet (CV) as the dye (0.1 mM ), CV condensed by about 25 times. It was found that one of the necessary conditions for the extraction/condensation is the hydrophobicity of the dye molecule; however, the dominant cause for accumulating inside the PNIPAM chain is the molecular interaction between the amide group in the side chain of PNIPAM and the functional groups such as carbonyl or amino groups in the dye molecules.  相似文献   

16.
Separation of the dyes methyl violet, methylene blue, and congo red from aqueous solutions by paper capillary permeation adsorption method was studied using paper. Nearly 100% of the investigated dyes could be separated under the optimum conditions. The effect of pH on the separation efficiency was studied in particular. At pH 5–9, 1.3–11, and 7–11, the maximum separation was achieved for methyl violet, methylene blue and congo red, respectively. The effects of dye concentration and some foreign ions on the separatability were examined. Moreover, the selective separation of some dyes was attempted by elution with chemical reagents.  相似文献   

17.
合成了水滑石改性的系列硅胶新材料HTS-n(s),该新材料同时包含有酸性位与碱性位,并通过碱腐蚀获得了3~4 nm的小孔和大的比表面积。该类材料可选择性吸附去除水产养殖用水中的工业染料类污染物孔雀石绿和结晶紫。吸附后水中剩余的染料浓度通过高效液相色谱-质谱/质谱联用仪进行检测,结果显示新材料的吸附性能超过常用的工业吸附剂NaY沸石和活性炭。  相似文献   

18.
In this study, magnetic multi‐walled carbon nanotube nanoparticles were synthesized and used as the adsorbent for the sums of malachite green, gentian violet and leucomalachite green, leucogentian violet in aquaculture water samples followed by high performance liquid chromatography with fluorescence detection. This method was based on in situ reduction of chromic malachite green, gentian violet to colorless leucomalachite green, leucogentian violet with potassium borohydride, respectively. The obtained adsorbent combines the advantages of carbon nanotubes and Fe3O4 nanoparticles in one material for separation and preconcentration of the reductive dyes in aqueous media. The structure and properties of the prepared nanoparticles were characterized by transmission and scanning electron microscopy, X‐ray diffraction, and Fourier‐transform infrared spectroscopy. The main parameters affecting the adsorption recoveries were investigated and optimized, including reducing agent concentration, type and amount of sorbent, sample pH, and eluting conditions. Under the optimum conditions, the limits of detection in this method were 0.22 and 0.09 ng/mL for malachite green and gentian violet, respectively. Product recoveries ranged from 87.0 to 92.8% with relative standard deviations from 4.6 to 5.9%. The results indicate that the sorbent is a suitable material for the removal and concentration of triphenylmethane dyes from polluted environmental samples.  相似文献   

19.
《Solid State Sciences》2000,2(4):421-447
Plants are masters of transforming sunlight into chemical energy. In the ingenious antenna system of the leaf, the energy of the sunlight is transported by chlorophyll molecules for the purpose of energy transformation. We have succeeded in reproducing a similar light transport in an artificial system on a nano scale. In this artificial system, zeolite L cylinders adopt the antenna function. The light transport is made possible by specifically organized dye molecules, which mimic the natural function of chlorophyll. Zeolites are crystalline materials with different cavity structures. Some of them occur in nature as a component of the soil. We are using zeolite L crystals of cylindrical morphology which consist of a continuous one-dimensional tube system and we have succeeded in filling each individual tube with chains of joined but noninteracting dye molecules. Light shining on the cylinder is first absorbed and the energy is then transported by the dye molecules inside the tubes to the cylinder ends. We expect that our system can contribute to a better understanding of the important light harvesting process which plants use for the photochemical transformation and storage of solar energy. We have synthesized nanocrystalline zeolite L cylinders ranging in length from 300 to 3000 nm. A cylinder of 800 nm diameter, e.g. consists of about 150 000 parallel tubes. Single red emitting dye molecules (oxonine) were put at each end of the tubes filled with a green emitting dye (pyronine). This arrangement made the experimental proof of efficient light transport possible. Light of appropriate wavelength shining on the cylinder is only absorbed by the pyronine and the energy moves along these molecules until it reaches the oxonine. The oxonine absorbs the energy by a radiationless energy transfer process, but it is not able to send it back to the pyronine. Instead it emits the energy in the form of red light. The artificial light harvesting system makes it possible to realize a device in which different dye molecules inside the tubes are arranged in such a way that the whole visible spectrum can be used by conducting light from blue to green to red without significant loss. Such a material could conceivably be used in a dye laser of extremely small size. The light harvesting nanocrystals are also investigated as probes in near-field microscopy, as materials for new imaging techniques and as luminescent probes in biological systems. The extremely fast energy migration, the pronounced anisotropy, the geometrical constraints and the high concentration of monomers which can be realized, have great potential in leading to new photophysical phenomena. Attempts are being made to use the efficient zeolite-based light harvesting system for the development of a new type of thin-layer solar cell in which the absorption of light and the creation of an electron-hole pair are spatially separated as in the natural antenna system of green plants. Synthesis, characterization and applications of an artificial antenna for light harvesting within a certain volume and transport of the electronic excitation energy to a specific place of molecular dimension has been the target of research in many laboratories in which different approaches have been followed. To our knowledge, the system developed by us is the first artificial antenna which works well enough to deserve this name. Many other highly organized dye–zeolite materials of this type can be prepared by similar methods and are expected to show a wide variety of remarkable properties. The largely improved chemical and photochemical stability of dye molecules inserted in an appropriate zeolite framework allows us to work with dyes which otherwise would be considered uninteresting because of their lack of stability. We have developed two methods for preparing well-defined dye–zeolite materials, one of them working at the solid–liquid and the other at the solid–gas interface. Different approaches for preparing similar materials are in situ synthesis (ship in a bottle) or different types of crystallization inclusion synthesis.  相似文献   

20.
Works concerned with the origin of coloration of organic compounds are reviewed. Proofs are given that individual triphenylmethane, xanthene, phthalocyanine, and thiazine dye molecules do not absorb light in the visible range and are not chromogens, that is, do not determine compound chromaticity. Individual molecules of these dyes should be considered chromophoric particles, necessary but insufficient for coloration generation. Elementary chromogens of the dyes under consideration are dimers (supramolecular particles). The blue coloration of aromatic compound azulene has a similar origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号