首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Water is known to play an important rôle in the recognition and stabilization of the interaction between a ligand and its site. This has important implications for drug design. Analyses of 19 high-resolution crystal structures of protein-ligand complexes reveal the multiple hydrogen-bonding feature of water molecules mediating protein-ligand interactions. Most of the water molecules (nearly 80%) involved in bridging the protein and the ligand can make three or more hydrogen bonds when distance and bond angles are used as criteria to define hydrogen-bonding interactions. Isotropic B-factors have been used to take into account the mobility of water molecules. The water molecules at binding sites bridge the protein and ligand, and interact with other water molecules to form a complex network of interconnecting hydrogen bonds. Some water molecules at the site do not directly bridge between the protein and the ligand, but may contribute indirectly to the stability of the complex by holding bridging water molecules in the right position through a network of hydrogen bonds. These water networks are probably crucial for the stability of the protein-ligand complex and are important for any site-directed drug design strategies.  相似文献   

2.
Summary If water molecules are strongly bound at a protein-ligand interface, they are unlikely to be displaced during ligand binding. Such water molecules can change the shape of the ligand binding site and thus affect strategies for drug design. To understand the nature of water binding, and factors influencing it, water molecules at the ligand binding sites of 26 high-resolution protein-ligand complexes have been examined here. Water molecules bound in deep grooves and cavities between the protein and the ligand are located in the indentations on the protein-site surface, but not in the indentations on the ligand surface. The majority of the water molecules bound in deep indentations on the protein-site surface make multiple polar contacts with the protein surface. This may indicate a strong binding of water molecules in deep indentations on protein-site surfaces. The local shape of the site surface may influence the binding of water molecules that mediate protein-ligand interactions.  相似文献   

3.
GREEN: A program package for docking studies in rational drug design   总被引:1,自引:0,他引:1  
Summary A program package, GREEN, has been developed that enables docking studies between ligand molecules and a protein molecule. Based on the structure of the protein molecule, the physical and chemical environment of the ligand-binding site is expressed as three-dimensional grid-point data. The grid-point data are used for the real-time evaluation of the protein-ligand interaction energy, as well as for the graphical representation of the binding-site environment. The interactive docking operation is facilitated by various built-in functions, such as energy minimization, energy contribution analysis and logging of the manipulation trajectory. Interactive modeling functions are incorporated for designing new ligand molecules while considering the binding-site environment and the protein-ligand interaction. As an example of the application of GREEN, a docking study is presented on the complex between trypsin and a synthetic trypsin inhibitor. The program package will be useful for rational drug design, based on the 3D structure of the target protein.  相似文献   

4.
The importance of the consideration of water molecules in the structural interpretation of ligand-derived pharmacophore models is explored. We compare and combine results from recently introduced methods for bound-water molecule identification in protein binding sites and ligand-superposition-based pharmacophore derivation, for the interpretation of ligand-derived pharmacophore models. In the analysis of thymidine kinase (HSV-1) and poly (ADP-ribose) polymerase (PARP), the concurrent application of both methods leads to an agreement in the prediction of tightly bound water molecules as key pharmacophoric points in the binding site of these proteins. This agreement has implications for approaching binding site analysis and consensus drug design, as it highlights how pharmacophore-based models of binding sites can include interaction features not only with protein groups but also with bound water molecules.  相似文献   

5.
We studied a dynamical model for the motion of the large scales of proteins in water. The model was obtained by projecting the (averaged) Newton equations onto some set of harmonic modes. We compared the statistics of the so‐obtained trajectories with those obtained by standard techniques, and concluded that our dynamical model is able to fairly reproduce the average properties of the large‐scale motion of the protein, and at the same time allow time steps one order of magnitude larger than the standard ones. © 2000 John Wiley & Sons, Inc. J Comput Chem 21: 1274–1282, 2000  相似文献   

6.
7.
Most computer-aided drug design methods ignore the presence of crystallographically-determined water molecules in the binding site of a target protein. In this paper, our de novo ligand design methods are applied to the X-ray crystal structure of bacterial neuraminidase in the presence of some selected water molecules. We have found that, for this particular protein, the complete removal of all bound water molecules leads to difficulties in generating any potential ligands if the unsatisfied hydrogen-bonding sitepoints left by removing these water molecules are to be satisfied by a ligand. As more of the crystallographically determined water molecules are allowed in the binding site, it becomes much easier to generate ligands in larger numbers and with wider chemical diversity. This example shows that, in some cases, bound water molecules can be more accessible for hydrogen bonding to an incoming ligand than the actual protein binding sitepoints associated with them. From the point of view of de novo ligand design, water molecules can thus act as versatile amphiprotic hydrogen-bonding sitepoints and reduce the conformational constraints of a particular binding site.  相似文献   

8.
A theoretical investigation of the coulombic interaction of water molecules with an ideal surface of an ionic crystal is conducted. The calculation is based on the Fourier transform of the long-range part of an coulombic potential with subsequent summation of its Fourier images and tabulation of the results. The method is numerically tested when solving the problem concerning the interaction with the surface of a silver iodide crystal. A comparison of the electric field near an ideal crystalline surface and its finite fragment is performed. The data obtained point to a strong dependence of electrochemical properties of the surface on the presence of crystalline defects on it.  相似文献   

9.
Properties of water at the surface of biomolecules are important for their conformational stability. The behaviour of hydrating water at protein transition (t) pressures P(t) and temperatures T(t) , with the points (P(t),T(t) ) lying in the Native-Denatured (N-D) transition line, is studied. Hydration shells at the hydrophilic regions of protein molecules with surface charge density sigma are investigated with the help of the equation of state of water in an open system. The local values of sigma rather close to each other (sigma(D) approximately 0.3 C m(-2)) are found for six different experimental lines of the N-D transition found in the literature. The values sigma(D) correspond to the crossings of the total pressure (P(t)+Pi) vs sigma isotherms at different T(t) (Pi-electrostriction pressure). The pressures P(t) and temperatures T(t) appear to be related with some selected sites at the surfaces of the protein molecules.  相似文献   

10.
Three hydrated aluminosilicate frameworks—LiABW, NaNAT, and BaEDI—are partly optimized with the periodic Hartree–Fock CRYSTAL95 code. In particular, we optimized the positions of the adsorbed water molecules including the positions of the framework cations (ABW, NAT) or part of the framework atomic positions (ABW). This allowed us to compare cation–water clusters in the gas and adsorbed states and discuss the influence of hydrogen bonding to the framework oxygen atoms or to the neighbor water molecules on the atomic properties (quadrupole coupling constant, anisotropy of electric field gradient) of the adsorbed water molecules. The LiBIK structure obtained from X‐ray diffraction is also considered to illustrate the hydrogen bonds occurring between adsorbed water molecules. © 2003 Wiley Periodicals, Inc. Int J Quantum Chem, 2003  相似文献   

11.
Summary In this paper a database of atomic residual charges has been constructed for all the molecular fragments defined previously in a combinatorial search of the Cambridge Structural Database. The charges generated for the atoms in each fragment are compared with charges calculated for whole molecules containing those fragments. The fragment atomic charges lie within 1 S.D. of the mean for 68%, and within 2 S.D. for 91%, of the atoms whose charges were computed for whole molecules. The actual charges on any atom are strongly influenced by the adjacent connected atoms. There is a large spread of atomic residual charge within the fragments database.  相似文献   

12.
13.
Eg5, a mitotic kinesin exclusively involved in the formation and function of the mitotic spindle has attracted interest as an anticancer drug target. Eg5 is co-crystallized with several inhibitors bound to its allosteric binding pocket. Each of these occupies a pocket formed by loop 5/helix α2 (L5/α2). Recently designed inhibitors additionally occupy a hydrophobic pocket of this site. The goal of the present study was to explore this hydrophobic pocket with our MED-SuMo fragment-based protocol, and thus discover novel chemical structures that might bind as inhibitors. The MED-SuMo software is able to compare and superimpose similar interaction surfaces upon the whole protein data bank (PDB). In a fragment-based protocol, MED-SuMo retrieves MED-Portions that encode protein-fragment binding sites and are derived from cross-mining protein-ligand structures with libraries of small molecules. Furthermore we have excluded intra-family MED-Portions derived from Eg5 ligands that occupy the hydrophobic pocket and predicted new potential ligands by hybridization that would fill simultaneously both pockets. Some of the latter having original scaffolds and substituents in the hydrophobic pocket are identified in libraries of synthetically accessible molecules by the MED-Search software. Ksenia Oguievetskaia and Laetitia Martin-Chanas contributed equally to this work.  相似文献   

14.
Proteins are key components of biological cells. For example, enzymes catalyze biochemical reactions, membrane transporters are responsible for uptake and release of critical and superfluous components from the cell environment, and structural proteins are responsible for the stability of the cell wall and cytoskeleton. Many of the diverse protein functions involve dynamic transitions ranging from small local atomic displacements up to large allosteric conformational changes. In any conformation, proteins are in contact with the universal solvent medium of cells, water. Water not only surrounds proteins but is often an integral part of proteins and also is involved in key mechanistic steps. This Minireview discusses recent experimental and theoretical results on the role of water for protein dynamics and function.  相似文献   

15.
Different strategies for the in silico generation of ligand molecules in the binding site of poly(ADP-ribose)polymerase (PARP) were studied in order to observe the effect of the targeting and displacement of tightly bound water molecules. Several molecular scaffolds were identified as having better interactions in the binding site when targeting one or two tightly bound water molecules in the NAD binding site. Energy calculations were conducted in order to assess the ligand-protein and ligand-water-protein interactions of different functional groups of the generated ligands. These calculations were used to evaluate the energetic consequences of the presence of tightly bound water molecules and to identify those that contribute favorably to the binding of ligands.  相似文献   

16.
This review is to summarize three new QSAR (quantitative structure-activity relationship) methods recently developed in our group and their applications for drug design. Based on more solid theoretical models and advanced mathematical techniques, the conventional QSAR technique has been recast in the following three aspects. (1) In the fragment-based two dimensional QSAR, or abbreviated as FB-QSAR, the molecular structures in a family of drug candidates are divided into several fragments according to the substitutes being investigated. The bioactivities of drug candidates are correlated with physicochemical properties of the molecular fragments through two sets of coefficients: one is for the physicochemical properties and the other for the molecular fragments. (2) In the multiple field three dimensional QSAR, or MF-3D-QSAR, more molecular potential fields are integrated into the comparative molecular field analysis (CoMFA) through two sets of coefficients: one is for the potential fields and the other for the Cartesian three dimensional grid points. (3) In the AABPP (amino acid-based peptide prediction), the bioactivities of peptides or proteins are correlated with the physicochemical properties of all or partial residues of the sequence through two sets of coefficients: one is for the physicochemical properties of amino acids and the other for the weight factors of the residues. Meanwhile, an iterative double least square (IDLS) technique is developed for solving the two sets of coefficients in a training dataset alternately and iteratively. Using the two sets of coefficients, one can predict the bioactivity of a query peptide, protein, or drug candidate. Compared with the old methods, the new QSAR approaches as summarized in this review possess machine learning ability, can remarkably enhance the prediction power, and provide more structural information. Meanwhile, the future challenge and possible development in this area have been briefly addressed as well.  相似文献   

17.
Summary In this paper a database of small frequently occurring molecular fragments is used for the determination of fragment bond lengths from the Cambridge Structural Database. A large number of bond types are described that have not been reported previously.  相似文献   

18.
Parasitic diseases such as sleeping sickness, Chagas' heart disease, and malaria are major health problems in poverty-stricken areas. Antiparasitic drugs that are not only active but also affordable and readily available are urgently required. One approach to finding new drugs and rediscovering old ones is based on enzyme inhibitors that paralyze antioxidant systems in the pathogens. These antioxidant ensembles are essential to the parasites as they are attacked in the human host by strong oxidants such as peroxynitrite, hypochlorite, and H2O2. The pathogen-protecting system consists of some 20 thiol and dithiol proteins, which buffer the intraparasitic redox milieu at a potential of -250 mV. In trypanosomes and leishmania the network is centered around the unique dithiol trypanothione (N1,N8-bis(glutathionyl)spermidine). In contrast, malaria parasites have a more conservative dual antioxidative system based on glutathione and thioredoxin. Inhibitors of antioxidant enzymes such as trypanothione reductase are, indeed, parasiticidal but they can also delay or prevent resistance against a number of other antiparasitic drugs.  相似文献   

19.
Ralf Ludwig 《Chemphyschem》2007,8(6):938-943
Ab initio calculations on molecular clusters and a quantum statistical model are used to probe the structure of liquid water and its anomalies. Characteristic temperature dependent mixtures of ring and three-dimensional, voluminous water clusters provide the famous density maximum. The mixture model also reproduces the shift of the density maximum as a function of pressure and isotopic substitution. This finding is consistent with femtosecond spectroscopy data suggesting that two distinct molecular species exist in liquid water. The given structures also reproduce the oxygen-oxygen pair correlation function and the vibrational IR spectrum of liquid water. The results underline the importance of three-dimensional, tetrahedrally coordinated structures for the understanding of water anomalies and the existence of two liquid phases in the supercooled region.  相似文献   

20.
Ab initio calculations at MP2 level of theory were used to study the proton transfer at the carboxylic sites of amino acids, in the isolated, mono‐ and di‐hydrated forms. In the case of water dimer, two interaction modes with glycine neutral structures (see Fig. 3 ) were explored, corresponding to the concerted and stepwise reaction pathways. Their transition states can be described as (H2O? H? OH2)+ [Fig. 4 (a)] and (H2O‐‐‐H? OH2)+ [Fig. 4 (b)], respectively. The energy analysis indicated that the concerted pathway is preferred. In the isolated, mono‐ and di‐hydrated glycine complexes, the activation barriers of the proton transfer at the carboxylic sites were calculated to be 34.49, 16.59, and 13.36 kcal mol?1, respectively. It was thus shown that the proton transfer is significantly assisted and catalyzed by water monomer so that it can take place at room temperature. Instead, the further addition of water molecules plays solvent effects rather than catalytic effects to this proton transfer process. The above results obtained with discrete water molecules were supported by the solvent continuum calculated data. It was also observed that the heavy dependence of the solvent continuum models on dipole moments may produce misleading results. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号