首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of acyclic polyethers with lipophilic amide, thioamide, and amine end groups was synthesized. Metal ion transport across bulk liquid membranes and measurement of thermodynamic parameters for ligand-metal ion complexation by titration calorimetry show strong selectivity for complexation of lead ion over other metal ion species for the diamide ligand. Lead ion complexation by the acyclic polyether diamide involves the amide oxygens and silver ion coordination by a dithioamide analog involves the thioamide sulfurs. With a proper length of the ethereal linkage, the ligand wraps around the metal ion in a pseudocyclic fashion.  相似文献   

2.
A non‐ionic cryptand‐22 surfactant consisting of a macrocyclic cryptand‐22 polar head and a long paraffinic chain (C10H21‐Cryptand‐22) was synthesized and characterized. The critical micellar concentration (CMC) of the cryptand surfactant in ROH/H2O mixed solvent was determined by the pyrene fluorescence probe method. In general, the cmc of the cryptand surfactant increased upon decreasing the polarity of the surfactant solution. The cryptand surfactant also can behave as a pseudo cationic surfactant by protonation of cryptand‐22 or complexation with metal ions. Effects of protonation and metal ions on the cmc of the cryptand surfactant were investigated. A preliminary application of the cryptand surfactant as an ion‐transport carrier for metal ions, e.g., Li+, Na+, K+ and Sr2+, through an organic liquid‐membrane was studied. The transport ability of the cryptand surfactant for these metal ions was in the order: K+ ≥ Na+ < Li+ < Sr2+. A comparison of the ion‐transport ability of the cryptand surfactant with other macrocyclic polyethers, e.g., dibenzo‐18‐crown‐6, 18‐crown‐6 and benzo‐15‐crown‐5, was studied and discussed. Among these macrocyclic polyethers, the cryptand surfactant was the best ion‐transport carrier for Na+, Li+ and Sr2+ ions. Furthermore, a foam extraction system using the cryptand surfactant to extract the cupric ion was also investigated.  相似文献   

3.
Reaction of alpha,beta-unsaturated methoxycarbene complexes 1 and 11 with methyl ketone lithium enolates 2 leads to the corresponding five-membered carbocyclic compounds 4 or diast-4 and 12. The influence of the solvent and/or cosolvent (PMDTA), which turned out to be crucial to direct the reaction to 4 or diast-4, is studied, and a tentative mechanism according to these facts is proposed. In addition, the reaction of carbene complex 1a with alkynyl methyl ketone lithium enolates can be directed to the formal [3 + 2] or [4 + 1] cyclization products by a slight variation of the reaction conditions. Finally, consecutive three-component coupling reactions with carbene complex 1a, lithium enolates 2, and aldehydes 18 to give, in a diastereoselective way, hydroxy carbonyl compounds 19 and tricyclic polyethers 20 are presented.  相似文献   

4.
Macrocyclic polyethers and their complexes   总被引:8,自引:0,他引:8  
The most important, and almost unique, property of the macrocyclic polyethers (“crown compounds”) is their tendency to form complexes with alkali metal salts and salts with similar cations. Such complexes are held together by electrostatic attraction between the cation and the negative end of the C? O dipoles. The stability of the polyether complexes depends primarily upon how well the cation fits into the polyether ring; other factors are the charge density of the cation and—in solution—the solvating power of the medium. Cyclic polyethers have been successfully employed, inter alia, in experiments with ionic compounds in organic solvents and in studies of ion transport in biological systems.  相似文献   

5.
Some block copolymers based on polymethacrylonitrile (PMAN) and polyethers or polyacetals were synthesized in an anionic way. To appreciate the salt/polymer interactions, polymer electrolytes were prepared by the dissolution of lithium imide or lithium perchlorate in PMAN homopolymer and copolymers. The investigation of the triblock copolymer complexes allowed the solvating competition between nitrile‐ and ether‐ or acetal‐functional groups to be highlighted. The polydioxolane solvating ability was equivalent to that of PMAN but lower than that of polyoxyethylene or polyoxypropylene. Moreover, we were interested in the salt effect as block compatibilization was concerned. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3665–3673, 2005  相似文献   

6.
采用四氢呋喃(THF)和缩水甘油(glycidol)进行阳离子开环共聚,一步合成了主链中含有柔性聚四氢呋喃线型链段的温敏性超支化共聚醚.采用定量13C-NMR确定了共聚醚的超支化结构,同时计算了其支化度.利用体积排除色谱-多角度激光光散射(SEC-MALLS)对聚合物分子量及分布进行了表征.紫外-可见光光谱(UV)测试发现共聚醚水溶液透过率在最低临界溶解温度(LCST)附近呈现剧烈变化,但是其相变速率缓慢,相变平衡时间可达30 min;且聚合物溶液的相变速率和紫外光透过率变化具有温度依赖性.采用透射电镜(TEM)对相变过程观察后发现,这种缓慢相变过程是由于超支化共聚醚组装形成的胶束随温度升高发生不同程度聚集所致.  相似文献   

7.
Orthorhombic structured LiMnPO4 was synthesized by a hydrothermal method. The possibility of manganese disorder in LiMnPO4 was studied using powder X-ray diffraction and X-ray absorption fine structure analysis. A manganese-rich model was proposed for the hydrothermally synthesized LiMnPO4. It is found that the extent of Mn2+ disorder on the Li+ sites was suppressed by increasing the reaction temperature, which led to an enhanced electrochemical activity. These observations are explained on the basis of the manganese-rich model, in which the disordered Mn2+ on the Li+ sites may act as a blockage in one-dimensional lithium ion transport pathway, thus reducing the electrochemical activity of the LiMnPO4 prepared at low temperatures.  相似文献   

8.
Structural effects on polyether cationization in matrix-assisted laser desorption/ionization (MALDI) are investigated using three different polyethers: PEG (polyethylene glycol), PPG (polypropylene glycol), and PTHF (polytetrahydrofuran). This study was performed using equimolar cesium and lithium chlorides as the cationizing agent. It was observed that the polyether structure variation led to a substantial change in polyether selectivity for alkali metal ion complexation. Moreover, it was found that like PEG, PPG displays a different selectivity for Cs+ and Li+ with different matrices. Discussion of these results and their implication in MALDI are given.  相似文献   

9.
采用交流阻抗和恒电位计时电流法测定了LiClO4·(PEO)20·(PC)12·(EC)12高分子电解质的锂离子迁移数。在非水溶液和高分子电解质中,锂是热力学不稳定的,表面生成一层固体电解质钝化膜,严重地影响了锂离子迁移数的准确测定。本方法避免固体电解质钝化膜的影响,给出正确的锂离子迁移数测定值,实验表明,LiClO4·(PEO)20·(PC)12·(EC)12电解质的电导率为0.8×10-3/cm,锂离子迁移数为0.3。  相似文献   

10.
New lithium salts for non-aqueous liquid, gel and polymeric electrolytes are crucial due to the limiting role of the electrolyte in modern lithium batteries. The solvation of any lithium salt to form an electrolyte solution ultimately depends on the strength of the cation-solvent vs. the cation-anion interaction. Here, the latter is probed via HF, B3LYP and G3 theory gas-phase calculations for the dissociation reaction: LiX <--> Li(+) + X(-). Furthermore, a continuum solvation method (C-PCM) has been applied to mimic solvent effects. Anion volumes were also calculated to facilitate a discussion on ion conductivities and cation transport numbers. Judging from the present results, synthesis efforts should target heterocyclic anions with a size of ca. 150 A(3) molecule(-1) to render new highly dissociative lithium salts that result in electrolytes with high cation transport numbers.  相似文献   

11.
The dissociation constants were determined in tetrahydrofuran for “living” polymers, built of a polystyrene block and statistically one terminal unit of ethylene oxide, butylene oxide or styrene oxide using lithium, sodium and potassium as counterions. The values for the dissociation constants at 25° of the alcoholate ion pairs are of the order of 10?9–10?10 M. It was found that living polymers with a terminal unit of styrene oxide and a lithium or sodium counterion form ion triplets at concentrations of about 10?5 M. Their dissociation constants, calculated by the Fuoss and Kraus method, are of the order of 10?5 M.  相似文献   

12.
It is a very urgent and important task to improve the safety and high‐temperature performance of lithium/lithium‐ion batteries (LIBs). Here, a novel ionic liquid, 1‐(2‐ethoxyethyl)‐1‐methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR1(2o2)TFSI), was designed and synthesized, and then mixed with dimethyl carbonate (DMC) as appropriate solvent and LiTFSI lithium salt to produce an electrolyte with high ionic conductivity for safe LIBs. Various characterizations and tests show that the highly flexible ether group could markedly reduce the viscosity and provide coordination sites for Li‐ion, and the DMC could reduce the viscosity and effectively enhance the Li‐ion transport rate and transference number. The electrolyte exhibits excellent electrochemical performance in Li/LiFeO4 cells at room temperature as well as at a high temperature of 60 °C. More importantly, with the addition of DMC, the IL‐based electrolyte remains nonflammable and appropriate DMC can effectively inhibit the growth of lithium dendrites. Our present work may provide an attractive and promising strategy for high performance and safety of both lithium and lithium‐ion batteries.  相似文献   

13.
利用界面缩聚技术,将二烷基二氯化锡、二(β-烷氧羰乙基)二氯化锡与有机二元醇、酚、硫醇反应,制成了一系列新的有机锡大分子化合物.对这些新化合物进行了分子量、红外光谱、TG/DTG测试.对有机锡大分子化合物阻止聚氯乙烯(PVC)热分解性能进行了测定.结果表明,新合成的有机锡聚醚化合物可作为PVC热稳定剂使用.  相似文献   

14.
粟智  刘丛  徐茂文 《应用化学》2010,27(2):220-226
以Na2CO3 、(CH3CO2)2Mn•4H2O、Y2O3和CH3COOLi•2H2O为原料,采用高温固相法经过2次灼烧和水热离子交换法得到一系列钇掺杂的LiMn1-xYxO2 (x=0.01,0.02,0.03,0.05) 化合物。通过XRD、XPS、循环伏安及恒电流充放电测试,研究了钇掺杂离子对合成正极材料结构及电化学性能的影响。X射线衍射测试结果表明,所得产物均具有单斜层状结构。循环伏安及恒电流充放电测试结果表明,合适的钇掺杂可以起到扩展锂离子脱嵌通道和稳定骨架结构的作用, 钇离子的引入可以部分取代原有的三价锰离子, 由于钇离子的离子半径较三价锰离子大, 因此稀土掺杂锰酸锂材料的晶胞参数比未掺杂材料大, 在一定程度上扩充了锂离子迁移的三维通道, 更有利于锂离子的嵌入与脱嵌,提高单斜层状LiMnO2 材料的电化学循环可逆性及循环稳定性。通过对所得化合物进行了钇掺杂量及电化学性能的研究,得到性能比较优良的LiY0.021Mn0.979O2化合物,其首次放电比容量为125.7 mA·h/g,100次循环以后,放电比容量达212.1 mA·h/g,远高于未掺杂材料的放电容量138 mA·h/g。交流阻抗测试结果表明, Y3+的掺入能降低材料的电化学反应阻抗和提高材料中Li+的扩散能力。  相似文献   

15.
《化学:亚洲杂志》2017,12(1):36-40
N‐doped mesoporous carbon‐capped MoO2 nanobelts (designated as MoO2@NC) were synthesized and applied to lithium‐ion storage. Owing to the stable core–shell structural framework and conductive mesoporous carbon matrix, the as‐prepared MoO2@NC shows a high specific capacity of around 700 mA h g−1 at a current of 0.5 A g−1, excellent cycling stability up to 100 cycles, and superior rate performance. The N‐doped mesoporous carbon can greatly improve the conductivity and provide uninhibited conducting pathways for fast charge transfer and transport. Moreover, the core–shell structure improved the structural integrity, leading to a high stability during the cycling process. All of these merits make the MoO2@NC to be a suitable and promising material for lithium ion battery.  相似文献   

16.
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large lithium motions occur during short times, we find that no single type of rearrangement of the lithium environment characterizes these events. We estimate the free energies of the lithium ion as a function of position during these events by calculation of potentials of mean force and thus derive an approximate map of the free energy as a function of lithium position during these events. The results are consistent with a Marcus-like picture in which the system slowly climbs a free energy barrier dominated by rearrangement of the polymer around the lithium ions, after which the lithium moves very quickly to a new position. Reducing the torsion forces in the model causes the diffusion rates to increase.  相似文献   

17.
汽车空调器压缩机用冷冻机油的研究   总被引:1,自引:0,他引:1  
采用三氟化硼乙醚 (BF3·Et2 O)催化体系合成较高粘度的环氧丙烷均聚醚 ,观察了不同反应参数对聚醚粘度的影响。同时考察了不同催化剂对聚醚酯性能的影响。结果表明 ,用固体钨硅酸合成的聚醚酯较对甲苯磺酸的性能好  相似文献   

18.
从二维碳材料石墨炔(GDY)的分子和电子结构出发,重点论述石墨炔在能源存储和转换两个领域的应用,包括最新的理论和实验进展。石墨炔独特的三维孔隙结构,使得石墨炔在锂存储和氢气存储应用中具备天然的优势,既可以用作锂离子相关的储能器件,包括锂离子电池、锂离子电容器等;也可作为储氢材料,用于燃料电池等。通过掺杂的方法,还能进一步提高石墨炔储锂和储氢的性能。由于sp炔键和sp2苯环的存在,使石墨炔具有多重共轭的电子结构,在具备狄拉克锥的同时,其带隙也可通过多种途径调控,使得石墨炔不仅可以作为非金属高活性催化剂替代贵金属在光催化等方面应用,还可以在太阳能电池的空穴传输层和电子传输层方面获得应用,展现了石墨炔在能源方面独特的应用价值。我们将从理论预测和实验研究两方面介绍该领域目前的研究现状和发展趋势。  相似文献   

19.
硝基环氧丙烷可在三氟化硼乙醚-丁二醇系统催化下顺利地进行聚合和共聚合,得到侧链带硝基甲基的端羟基聚醚。预聚物与二异氰酸酯和甘油反应可进一步交联成为具有一定强度和弹性的胶片。研究了预聚物和胶片的某些特性。  相似文献   

20.
碳材料具有价格低廉、 易制备、 环境友好、 导电性高、 比表面积大以及适合离子存储和迁移等优点, 已成为目前应用于电化学储能器件电极的重要材料之一. 石墨炔(GDY)是一种新型的二维碳同素异形体, 由sp2碳杂化形式的苯环和sp碳杂化形式的炔键构成. 这种独特的化学结构一方面保持了碳材料良好的导电特性, 另一方面形成了新颖的离子传输通道, 为碳材料带来了不同的离子传输和存储特性. 与此同时, 由于石墨炔的空间结构可调性, 可以通过引入异原子微调石墨炔电子结构, 拓展石墨炔在电极材料领域的应用. 本文重点对近几年异原子杂化石墨炔基电极材料在锂离子电池、 钠离子电池、 金属硫电池、 电容器、 金属空气电池和电极保护等储能领域的研究工作进行总结, 并对未来石墨炔类材料在储能领域的发展进行了展望.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号