首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
The aim of this work was to assess the feasibility of photoacoustic imaging (PAI) and MR imaging for evaluating the cerebrovascular reserve capacity (CVRC) in animal models. Wistar-Kyoto (WKY) rats and spontaneous hypertensive rats (SHR) were used for MRI. BALB/c mice were used for PAI. MR perfusion weighted imaging (PWI) was performed on a 1.5-T whole-body MR system before and after oral administration of acetazolamide (ACZ). The region of interest (ROI) was chosen in the bilateral frontal lobe for measuring regional cerebral blood flow (rCBF), regional cerebral blood volume (rCBV) and mean transit time (MTT). The vessel diameters of the superficial layer of the cortex were measured by PAI in the resting and ACZ-activated mice. The results showed that there was a statistical difference between the resting and ACZ-activated animals in vessel diameter, rCBV and rCBF values. The increments in rCBV and rCBF of WKY rats between resting and ACZ test states were significantly higher than that of SHR. The pathological findings of small arterial walls and lumen of the brain were also different between WKY and SHR rats. The diameters of blood vessels in the superficial layer of the brain measured by PAI were enlarged after the ACZ tolerance test. This result was also observed in the MRI CBV map, where the signal of the vessel in the superficial layer of the cortex became redder after the ACZ stimulation, suggesting the increase of blood flow. It can be concluded that MR PWI and PAI combined with the ACZ test might be useful in evaluating the CVRC and revealing the pathologic changes in cerebral vessels.  相似文献   

2.
MRI of blood volume with MS 325 in experimental choroidal melanoma   总被引:2,自引:0,他引:2  
Functional magnetic resonance imaging (MRI) allows quantitative blood volume imaging in vivo at high tissue resolution. The purpose is to apply this technique for untreated and hyperthermia-treated experimental choroidal melanoma. MS 325 was used as new intravascular albumin-bound gadolinium-based contrast agent. Pigmented choroidal melanomas were established in albino rabbits. MRI was performed in 7 untreated eyes and 7 eyes treated with a Neodymium:Yttrium-Lanthanum-Fluoride-laser at 1047 nm. 3D-spoiled gradient echo pulse sequences were used to acquire T' weighted axial images. First, a set of images was collected without contrast agent. MS 325 was then injected i.v. and images were obtained within 12 min after injection. Signal intensities were measured within tumor, ciliary body, choroid, and iris and relative signal intensities were determined for these tissues in relation to vitreous. In untreated tumors, the relative signal intensity was higher after injection of MS 325 (5.61+0.70) than without MS 325 (2.90+0.33; p = 0.0002). In contrast, the relative signal intensity of treated tumors did not differ significantly before and after MS 325 (6.19+1.59 and 6.13+1.64). Histopathological sections indicated vascular occlusion in treated tumors. All other studied tissues of untreated and treated eyes showed a significant increase of relative signal intensities in the presence of MS 325. An animal model for the research on contrast agents in MRI is presented. Blood volume measurement with MS 325 was adapted for experimental choroidal melanomas. Reduced change of relative signal intensity indicates compromised blood volume after vascular occlusion in hyperthermia-treated melanoma. Further studies are needed to investigate whether this technique allows the evaluation of tumor viability following treatments.  相似文献   

3.
PurposeElectron paramagnetic resonance (EPR) imaging has evolved as a promising tool to provide non-invasive assessment of tissue oxygenation levels. Due to the extremely short T2 relaxation time of electrons, single point imaging (SPI) is used in EPRI, limiting achievable spatial and temporal resolution. This presents a problem when attempting to measure changes in hypoxic state. In order to capture oxygen variation in hypoxic tissues and localize cycling hypoxia regions, an accelerated EPRI imaging method with minimal loss of information is needed.MethodsWe present an image acceleration technique, partial Fourier compressed sensing (PFCS), that combines compressed sensing (CS) and partial Fourier reconstruction. PFCS augments the original CS equation using conjugate symmetry information for missing measurements. To further improve image quality in order to reconstruct low-resolution EPRI images, a projection onto convex sets (POCS)-based phase map and a spherical-sampling mask are used in the reconstruction process. The PFCS technique was used in phantoms and in vivo SCC7 tumor mice to evaluate image quality and accuracy in estimating O2 concentration.ResultsIn both phantom and in vivo experiments, PFCS demonstrated the ability to reconstruct images more accurately with at least a 4-fold acceleration compared to traditional CS. Meanwhile, PFCS is able to better preserve the distinct spatial pattern in a phantom with a spatial resolution of 0.6 mm. On phantoms containing Oxo63 solution with different oxygen concentrations, PFCS reconstructed linewidth maps that were discriminative of different O2 concentrations. Moreover, PFCS reconstruction of partially sampled data provided a better discrimination of hypoxic and oxygenated regions in a leg tumor compared to traditional CS reconstructed images.ConclusionsEPR images with an acceleration factor of four are feasible using PFCS with reasonable assessment of tissue oxygenation. The technique can greatly enhance EPR applications and improve our understanding cycling hypoxia. Moreover this technique can be easily extended to various MRI applications.  相似文献   

4.
Graded asymmetric spin echo-echo planar imaging (ASE-EPI) was used to measure transient alterations in cerebral oxygenation resulting from 60 seconds of anoxia in alpha-chloralose anaesthetised rats. The anoxic period induced a transient fall ( approximately 1 min) in signal intensity followed by a prolonged signal overshoot consistent with an autoregulatory response to oxygen deprivation. The magnitude of signal response, integrated over the entire brain, increased linearly with the echo asymmetry (t(ge)). However, that increase in sensitivity was offset by a reduced signal to noise ratio and quality of the image data. The responses of four regions of interest within the brain to the anoxic stimulus, and the effect of increasing the echo asymmetry, were compared. A comparable magnitude of signal decrease was observed in all brain regions except the superficial cortex that included pial vessels. As t(ge) was incremented differences in signal attenuation between regions became more pronounced. The signal overshoot observed upon restoration of normal breathing gases showed similar trends, producing similar normalised vascular responses for all regions of interest studied. Different regions of interest showed comparable time courses of the signal overshoot suggesting that similar autoregulatory vascular mechanisms operate in all brain regions. These findings additionally show that the use of graded ASE-EPI produced a characteristic profile of maximum signal change measured during and following the anoxic period for each brain region. They suggest that the shape of this profile was determined by the local vasculature within each region of interest; this feature could be exploited in activation studies to eliminate regions with significant signal changes originating from large draining vessels. Finally, the consistent physiological response observed, when the overshoot was compared to the magnitude of the signal drop, demonstrated that modification of the spin echo offset parameter did not mask or detrimentally alter the signal change resulting from the underlying physiological perturbation.  相似文献   

5.
Non-human primates (NHPs) are vital models for neuroscience research. These animals have been widely used in behavioral, electrophysiological, molecular, and more recently, multimodal neuroimaging and neuro-engineering studies. Several RF coil arrays have been designed for functional, high-resolution brain magnetic resonance imaging (MRI), but few have been designed to accommodate multimodal devices. In the present study, a 16-channel array coil was constructed for brain imaging of macaques at 3 Tesla (3 T). To construct this coil, a close-fitting helmet-shaped form was designed to host 16 coil loops for whole-brain coverage. This assembly is mountable onto stereotaxic head frame bars, and the coil functions while the monkey is in the sphinx position with a clear line of vision of stimuli presented from outside of the MRI system. In addition, 4 openings were allocated in the coil housing, allowing multimodal devices to directly access visual cortical regions such as V1-V4 and MT. Coil performance was evaluated in an anesthetized macaque by quantifying and comparing signal-to-noise ratios (SNRs), noise correlations, and g-factor maps to a vendor-supplied human pediatric coil frequently used for NHP MRI. The result from in vivo experiments showed that the NHP coil was well-decoupled, had higher SNRs in cortical regions, and improved data acquisition acceleration capability compared with a vendor-supplied human pediatric coil that has been frequently used in macaque MRI studies. Furthermore, whole-brain anatomic imaging, diffusion tensor imaging and functional brain imaging have also been conducted: the details of brain anatomical structure, such as cerebellum and brainstem, can be clearly visualized in T2-SPACE images; b0 SNR calculated from b0 maps was higher than the human pediatric coil in all regions of interest (ROIs); the time-course SNR (tSNR) map calculated for GRE-EPI images demonstrates that the presented coil can be used for high-resolution functional imaging at 3 T.  相似文献   

6.
Keyhole diffusion tensor imaging (keyhole DTI) was previously proposed in cardiac imaging to reconstruct DTI maps from the reduced phase-encoding images. To evaluate the feasibility of keyhole DTI in brain imaging, keyhole and zero-padding DTI algorithms were employed on in vivo mouse brain. The reduced phase-encoding portion, also termed as the sharing rate, was varied from 50% to 90% of the full k-space. Our data showed that zero-padding DTI resulted in decreased fractional anisotropy (FA) and decreased mean apparent diffusion coefficient (mean ADC) in white matter (WM) regions. Keyhole DTI showed a better edge preservation on mean ADC maps but not on FA maps as compared to the zero-padding DTI. When increasing the sharing rate in keyhole approach, an underestimation of FA and an over- or underestimation of mean ADC were measured in WM depending on the selected reference image. The inconsistency of keyhole DTI may add a challenge for the wide use of this modality. However, with a carefully selected directive diffusion-weighted image to serve as the reference image in the keyhole approach, this study demonstrated that one may obtain DTI indices of reduced-encoding images with high consistency to those derived with full k-space DTI.  相似文献   

7.
Arterial spin labeling (ASL) perfusion contrast is not based on susceptibility effects and can therefore be used to study brain function in regions of high static inhomogeneity. As a proof of concept, single-shot spin-echo echo-planar imaging (EPI) acquisition was carried out with a multislice continuous ASL (CASL) method at 1.5T. A bilateral finger tapping paradigm was used in the presence of an exogenously induced susceptibility artifact over left motor cortex. The spin-echo CASL technique was compared with a regular gradient-echo EPI sequence with the same slice thickness, as well as other imaging methods using thin slices and spin-echo acquisitions. The results demonstrate improved functional sensitivity and efficiency of the spin-echo CASL approach as compared with gradient-echo EPI techniques, and a trend of improved sensitivity as compared with spin-echo EPI approach in the brain regions affected by the susceptibility artifact. ASL images, either with or without subtraction of the control, provide a robust alternative to blood oxygenation level dependant (BOLD) methods for activation imaging in regions of high static field inhomogeneity.  相似文献   

8.
Serial MR imaging of intracranial metastases after radiosurgery   总被引:1,自引:0,他引:1  
Purpose: To evaluate the spatiotemporal evolution of radiosurgical induced changes both in metastases and in normal brain tissue adjacent to the lesions by serial magnetic resonance (MR) imaging. Methods and Materials: Thirty-five intracranial metastases of different primaries were treated in 25 patients by single high-dose radiosurgery. MR images acquired before radiosurgery were available in all patients. Sixty-three follow-up MR studies were performed in these patients including T2- and contrast-enhanced T1-weighted MR images. The average follow-up time was 9 ± 5 months (mean ± standard deviation [SD]). Based on contrast-enhanced T1-weighted MR images, tumor response was radiologically classified in the following four groups: stable disease was assumed if the average tumor diameter after treatment did not show a tumor shrinkage of more than 50% and an increase of more than 25%, partial remission as a shrinkage of tumor size of more than 50%, a disappearance of contrast-enhancing tumor as a complete remission, and an increase of tumor diameter of more than 25% as tumor progress. Moreover, we analysed signal changes on T2-weighted images in brain parenchyma adjacent to the enhancing metastases. Results: The overall mean survival time was 10.5 ± 7 months, with a 1-year actuarial survival rate of 40%. Stable disease, partial or complete remission of the metastatic tumor was observed in 22 patients (88%). Central or homogeneous loss of contrast enhancement appeared to be a good prognostic sign for stable disease or partial remission. This association was statistically significant (p < 0.05). Three patients (12%) suffered from tumor progression. In eight patients (32%) with stable disease or partial remission, signal changes on T2-weighted images were observed in tissue adjacent to the contrast enhancing lesions. A progression of the high signal on T2-weighted images was seen in seven of the eight patients between 3 and 6 months after therapy, followed by a signal regression 6–18 months after irradiation. Conclusion: MR imaging is a sensitive imaging tool to evaluate tumor response as well as the presence or absence of adjacent parenchymal changes following radiosurgery. Loss of homogeneous or central contrast enhancement on Gd-enhanced MR images appeared to be a good prognostic sign for tumor response. Tumor shrinkage seems not to be dependent on time. In addition, most cases of radiation induced changes in normal brain parenchyma observed on T2-weighted images seem to be self limited.  相似文献   

9.
Cerebral vascular reactivity in different regions of the rat brain was quantitatively characterized by spatial and temporal measurements of blood oxygenation level-dependent (BOLD)-fMRI signals following intravenous administration of the carbonic anhydrase inhibitor acetazolamide: this causes cerebral vasodilatation through a cerebral extracellular acidosis that spares neuronal metabolism and vascular smooth muscle function, thus separating vascular and cerebral metabolic events. An asymmetric spin echo-echo planar imaging (ASE-EPI) pulse sequence sensitised images selectively to oxygenation changes in the microvasculature; use of a surface coil receiver enhanced image signal-to-noise ratios (SNRs). Image SNRs and hardware integrity were verified by incorporating quality assurance procedures; cardiorespiratory stability in the physiological preparations were monitored and maintained through the duration of the experiments. These conditions made it possible to apply BOLD contrast fMRI to map regional changes in cerebral perfusion in response to acetazolamide administration. Thus, fMRI findings demonstrated cerebral responses to acetazolamide that directly paralleled the known physiological actions of acetazolamide and whose time courses were similar through all regions of interest, consistent with acetazolamide's initial distribution in brain plasma, where it affects cerebral haemodynamics by acting at cerebral capillary endothelial cells. However, marked variations in the magnitude of the responses suggested relative perfusion deficits in the hippocampus and white matter regions correlating well with their relatively low vascularity and the known vulnerability of the hippocampus to ischaemic damage.  相似文献   

10.
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can estimate parameters relating to blood flow and tissue volume fractions and therefore may be used to characterize the response of breast tumors to treatment. To assess treatment response, values of these DCE-MRI parameters are observed at different time points during the course of treatment. We propose a method whereby DCE-MRI data sets obtained in separate imaging sessions can be co-registered to a common image space, thereby retaining spatial information so that serial DCE-MRI parameter maps can be compared on a voxel-by-voxel basis. In performing inter-session breast registration, one must account for patient repositioning and breast deformation, as well as changes in tumor shape and volume relative to other imaging sessions. One challenge is to optimally register the normal tissues while simultaneously preventing tumor distortion. We accomplish this by extending the adaptive bases algorithm through adding a tumor-volume preserving constraint in the cost function. We also propose a novel method to generate the simulated breast magnetic resonance (MR) images, which can be used to evaluate the proposed registration algorithm quantitatively. The proposed nonrigid registration algorithm is applied to both simulated and real longitudinal 3D high resolution MR images and the obtained transformations are then applied to lower resolution physiological parameter maps obtained via DCE-MRI. The registration results demonstrate the proposed algorithm can successfully register breast MR images acquired at different time points and allow for analysis of the registered parameter maps.  相似文献   

11.
Susceptibility-weighted imaging (SWI) is a valuable technique for high-resolution imaging of brain vasculature that greatly benefits from the emergence of higher field strength MR scanners. Autocalibrating partially parallel imaging techniques can be employed to reduce lengthy acquisition times as long as the decrease in signal-to-noise ratio does not significantly affect the contrast between vessels and brain parenchyma. This study assessed the feasibility of a Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA)-based SWI technique at 7 T in both healthy volunteers and brain tumor patients. GRAPPA-based SWI allowed a twofold or more reduction in scan time without compromising vessel contrast and small vessel detection. Postprocessing parameters for the SWI needed to be modified for patients where the tumor causes high-frequency phase wrap artifacts but did not adversely affect vessel contrast. GRAPPA-based SWI at 7 T revealed regions of microvascularity, hemorrhage and calcification within heterogeneous brain tumors that may aid in characterizing active or necrotic tumor and monitoring treatment effects.  相似文献   

12.
The most recently reported magnetic resonance first-pass myocardial perfusion studies were restricted to single slice imaging or a data analysis based on interactively placed regions of interest. This study was designed to investigate a new saturation recovery TurboFLASH sequence for multisection myocardial perfusion imaging and to develop a pixel-based software tool to calculate qualitative perfusion parameters. The findings of perfusion imaging were compared to percent systolic myocardial wall thickening analysis and 99mTc Sesta MIBI SPECT. Six healthy volunteers and twelve patients with proven coronary artery disease (CAD) or chronic myocardial infarction were examined. Diagnostic images were acquired for all volunteers and patients with the multisection saturation recovery TurboFLASH sequence. Perfusion defects could be visualized on parameter maps for signal intensity increase over baseline and signal intensity upslope. Sensitivity and specificity were 76.9% and 97.1% for first-pass perfusion MRI, and respectively 84.6% and 94.3% for CINE imaging. All perfusion defects determined with 99mTc Sesta MIBI SPECT were identified by the combined analysis of myocardial perfusion and wall thickening. The presented software demonstrated a pixel-based analysis of first-pass perfusion studies and simplified image interpretation in a clinical setting. The combination of perfusion and wall motion imaging provided complementary information for the treatment of patients suffering from CAD.  相似文献   

13.
Fluid-attenuated inversion recovery (FLAIR) technique offers an effective tool to diminish partial-volume averaging effects from cerebrospinal (CSF) signal with in vivo magnetic resonance imaging. CSF-suppressed and unsuppressed direction-dependent diffusion-weighted (DW) images are obtained with a DW spin-echo EPI sequence in a single acquisition scheme. Comparison of unsuppressed and CSF-suppressed apparent diffusion coefficient (ADC) maps yields consistent values for brain tissue in volunteers when no partial-volume effects are expected, but differs considerably at borders of parenchyma to ventricles and sulci. From theory and phantom studies, a corrected anisotropy index is introduced considering differences of statistical fit errors. Anisotropy of white matter is observed in normal brain of volunteers. Anisotropy index maps reveal destruction of fiber tracts in pathologic areas. Results of a preliminary study on 12 patients with intra-axial tumors indicate an improved delineation of tumor boundaries of FLAIR ADC maps against unsuppressed acquisition.  相似文献   

14.
Experimental parameters used in the annular bright field (ABF) imaging method were tested using images simulated with the multislice method. Images simulated under identical conditions were found to agree well with experimental images. The ABF technique was shown to be relatively insensitive to the sample thickness and the defocus. In experimental ABF images, atomic columns exhibited dark contrast over a wide range of specimen thickness and defocus values, from 10 to 70 nm and ?20 to +20 nm, respectively. A series of diffraction patterns at atomic columns, obtained using the diffraction imaging method, exhibited higher intensities in their central regions (0–11 mrad) for light elements and in their peripheral regions (11–22 mrad) for heavy elements. The results indicated that the contrast of light elements is enhanced by subtraction of the central region of the transmitted beam, since this is blocked by a circular mask in the ABF-STEM technique. Thus, the overall contrast of light elements is greatly improved, allowing them to be clearly visualized.  相似文献   

15.
Clinical blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is becoming increasingly valuable in, e.g., presurgical planning, but the commonly used gradient-echo echo-planar imaging (GE-EPI) technique is sometimes hampered by macroscopic field inhomogeneities. This can affect the degree of signal change that will occur in the GE-EPI images as a response to neural activation and the subsequent blood oxygenation changes, i.e., the BOLD sensitivity (BS). In this study, quantitative BS maps were calculated directly from gradient-echo field maps obtainable on most clinical scanners. In order to validate the accuracy of the calculated BS-maps, known shim gradients were applied and field maps and GE-EPI images of a phantom were acquired. Measured GE-EPI image intensity was then compared with the calculated (predicted) image intensity (pII) which was obtained from the field maps using theoretical expressions for image-intensity loss. The validated expressions for pII were used to calculate the corresponding predicted BOLD sensitivity (pBS) maps in healthy volunteers. Since the field map is assumed to be valid throughout an entire fMRI experiment, the influence of subject motion on the pBS maps was also assessed. To demonstrate the usefulness of such maps, pBS was investigated for clinically important functional areas including hippocampus, Broca's area and primary motor cortex. A systematic left/right pBS difference was observed in Broca's area and in the hippocampus, most likely due to magnetic field inhomogeneity of the particular MRI-system used in this study. For all subjects, the hippocampus showed pBS values above unity with a clear anterior–posterior gradient and with an abrupt drop to zero pBS in the anterior parts of hippocampus. It is concluded that GE field maps can be used to accurately predict BOLD sensitivity and that this parameter is useful to assess spatial variations which will influence fMRI experiments.  相似文献   

16.
Theoretical considerations on the signal-to-noise ratio (SNR) in FLASH-EPI-Hybrid imaging were published previously. The purpose of this work was to investigate in vivo the signal intensities in Hybrid images as a function of sequence specific parameters. In detail, the SNR as a function of the number of echoes m per RF excitation, the excitation flip angle alpha, and the dependence on the tissue relaxation times T1 and T2* were studied. In eight healthy subjects brain and abdominal Hybrid images were acquired where m and alpha were changed independently. Signal intensities in human brain, liver, and kidney were evaluated for each Hybrid experiment. Additionally, T1 and T2* values of these tissue types were quantified to allow for a comparison with the theory. An excellent agreement between calculated and measured signal behavior was found. The theory was therefore validated in vivo and can thus be used to optimize the signal-to-noise in Hybrid experiments.  相似文献   

17.
Functional magnetic resonance imaging favors the use of multi-slice gradient-recalled echo-planar imaging due to its short image acquisition times, whole brain coverage and sensitivity to BOLD contrast. However, despite its advantages, gradient-recalled echo-planar imaging also is sensitive to static magnetic field gradients arising primarily from air-tissue interfaces. This can lead to image artifacts such as voxel shifts and complete signal loss. A method to recover signal loss by adjusting the refocusing gradient amplitude in the slice-select direction, preferably axially, is proposed. This method is implemented as an automated computer algorithm that partitions echo-planar images into regions of recoverable signal intensities using a histogram analysis and determines each region's proper refocusing gradient amplitude. As an example, different refocusing gradient amplitudes are interleaved in a fMRI acquisition to maximize the signal to noise ratio and obtain functional activation in normal and dropout regions. The effectiveness of this method is demonstrated by recovering signal voids in the orbitofrontal cortex, parahippocampal/amygdala region, and inferior visual association cortex near the cerebellum.  相似文献   

18.
Magnetic resonance imaging techniques were used to investigate the response of the liver of the rat in situ to a toxicological challenge by carbon tetrachloride. Proton images were taken as transverse slices through the rat before and after intraperitoneal administration of the hepatotoxin. Two to three hours after carbon tetrachloride was given, a region of high proton signal intensity was observed where the portal vein enters the liver. Sodium-23 images were also taken, and a region of high sodium intensity was observed in the same location within the liver as the increased proton intensity. The results suggest that acute administration of carbon tetrachloride induces localized liver damage in the region where the hepatotoxin first enters the liver. This liver damage is manifest as edema with a buildup of sodium ion and water, which can be readily detected by sodium-23 and proton NMR imaging techniques, respectively.  相似文献   

19.
Near-infrared (NIR) fluorescence imaging is an important imaging technology in deep-tissue biomedical imaging and related researches, due to the low absorption and scattering of NIR excitation and/or emission in biological tissues. Laser scanning confocal microscopy (LSCM) plays a significant role in the family of fluorescence microscopy. Due to the introduction of pinhole, it can provide images with optical sectioning, high signal-to-noise ratio and better spatial resolution. In this study, in order to combine the advantages of these two techniques, we set up a fluorescence microscopic imaging system, which can be named as NIR-LSCM. The system was based on a commercially available confocal microscope, utilizing a NIR laser for excitation and a NIR sensitive detector for signal collection. In addition, NIR fluorescent nanoparticles (NPs) were prepared, and utilized for fluorescence imaging of the ear and brain of living mice based on the NIR-LSCM system. The structure of blood vessels at certain depth could be visualized clearly, because of the high-resolution and large-depth imaging capability of NIR-LSCM.  相似文献   

20.
Functional magnetic resonance imaging (fMRI) is widely used to detect and delineate regions of the brain that change their level of activation in response to specific stimuli and tasks. Simple activation maps depict only the average level of engagement of different regions within distributed systems. FMRI potentially can reveal additional information about the degree to which components of large-scale neural systems are functionally coupled together to achieve specific tasks. In order to better understand how brain regions contribute to functionally connected circuits, it is necessary to record activation maps either as a function of different conditions, at different times or in different subjects. Data obtained under different conditions may then be analyzed by a variety of techniques to infer correlations and couplings between nodes in networks. Several multivariate statistical methods have been adapted and applied to analyze variations within such data. An approach of particular interest that is suited to studies of connectivity within single subjects makes use of acquisitions of runs of MRI images obtained while the brain is in a so-called steady state, either at rest (i.e., without any specific stimulus or task) or in a condition of continuous activation. Interregional correlations between fluctuations of MRI signal potentially reveal functional connectivity. Recent studies have established that interregional correlations between different components of circuits in each of the visual, language, motor and working memory systems can be detected in the resting state. Correlations at baseline are changed during the performance of a continuous task. In this review, various methods available for assessing connectivity are described and evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号