首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ion-pair dissociation dynamics of Cl2 -->(XUV) Cl(-)((1)S0) + Cl(+)((3P(2,1,0)) in the range 12.41-12.74 eV have been studied employing coherent extreme ultraviolet (XUV) radiation and the velocity map imaging) method. The ion-pair yield spectrum has been measured, and 72 velocity map images of Cl(-)((1)S0) have been recorded for the peaks in the spectrum. From the images, the branching ratios among the three spin-orbit components Cl(+)((3)P2), Cl(+)((3)P1) and Cl(+)((3)P0) and their corresponding anisotropic parameters beta have been determined. The ion-pair dissociation mechanism is explained by predissociation of Rydberg states converging to ion-core Cl2(+)(A(2)Pi(u)). The Cl(-)((1)S0) ion-pair yield spectrum has been assigned based on the symmetric properties of Rydberg states determined in the imaging experiments. The parallel and perpendicular transitions correspond to the excitation to two major Rydberg series, [A(2)Pi(u)]3d pi(g), (1)Sigma(u)(+) and [A(2)Pi(u)]5s sigma(g), (1)Pi(u), respectively. For the production of Cl(+)((3)P0), it is found that all of them are from parallel transitions. But for Cl(+)((3)P1), most of them are from perpendicular transitions. The production of Cl(+)((3)P2) is the major channel in this energy region, and they come from both parallel and perpendicular transitions. It is found that for most of the predissociations the projection of the total electronic angular momentum on the molecular axis (Omega) is conserved. The ion-pair dissociation may be regarded as a probe for the symmetric properties of Rydberg states.  相似文献   

2.
The fine structure resolved photofragment O(-)((2)P(j)) image from the O(2) ion-pair production at 17.499 eV has been recorded. The branching ratio for producing the low energy spin-orbit O(-)((2)P(3/2)) component to the high energy spin-orbit O(-)((2)P(1/2)) component is 1:0.78 and the optical transitions for them correspond to perpendicular and parallel transitions, respectively. The anisotropy parameters, 1.64 for channel producing O(-)((2)P(1/2)) and -0.35 for O(-)((2)P(3/2)), suggest that the dissociation proceeds via the states with symmetry (3)Sigma(u)(-) and (3)Pi(u), respectively. Although the main mechanisms for the O(2) ion-pair production are the predissociation via the intermediate Rydberg states, the direct dissociation mechanism for the channel producing O(-)((2)P(1/2)) may also be involved.  相似文献   

3.
The isotopomer-resolved vibrational and spin-orbit energy structures of Cl(2) (+)(X (2)Pi(g)) have been studied by one-photon zero kinetic energy photoelectron spectroscopy. The spin-orbit energy splitting for the ground vibrational state is determined as 717.7+/-1.5 cm(-1), which greatly improves on the accuracy of the previously reported data. This value is found to be in good agreement with the ab initio quantum chemical calculation taking account of the inner shell electron correlation. The first adiabatic ionization energy (IE) of Cl(2) is determined as 92 645.9+/-1.0 cm(-1). Using the ion-pair formation imaging method to discriminate signals of Cl(+)((1)D(2)) from those of Cl(+)((3)P(j)), the threshold for ion-pair (E(tipp)) production, Cl(+)((1)D(2))+Cl(-)((1)S(0))<--Cl(2)(X (1)Sigma(g) (+)), is determined as 107 096(-2) (+8) cm(-1). By using the determined IE and E(tipp) for Cl(2) and also the reported IE and electronic affinity for chlorine atom, the bond dissociation energies of Cl(2)(X (1)Sigma(g) (+)) and Cl(2) (+)(X (2)Pi(g)) have been determined as 19 990(-2) (+8) and 31 935.1(-2) (+8), respectively.  相似文献   

4.
DCl(+)(X (2)Pi(32),v(+")=0) cations have been prepared by 2+1 resonance enhanced multiphoton ionization, and their subsequent fragmentation following excitation at numerous wavelengths in the range of 240-350 nm studied by velocity map imaging of the resulting Cl(+) products. This range of excitation wavelengths allows selective population of A (2)Sigma(+) state levels with all vibrational (v(+')) quantum numbers in the range 0< or =v(+')< or =15. Image analysis yields wavelength dependent branching ratios and recoil anisotropies of the various D+Cl(+) ((3)P(J), (1)D, and (1)S) product channels. Levels with 10< or =v(+')< or =15 have sufficient energy to predissociate, forming D+Cl(+)((3)P(J)) products with perpendicular recoil anisotropies-consistent with the A (2)Sigma(+)<--X (2)Pi parent excitation and subsequent fragmentation on a time scale that is fast compared with the parent rotational period. Branching into the various spin-orbit states of the Cl(+)((3)P(J)) product is found to depend sensitively upon v(+') and, in the case of the v(+')=13 level, to vary with the precise choice of excitation wavelength within the A (2)Sigma(+)<--X (2)Pi(13,0) band. Such variations have been rationalized qualitatively in terms of the differing contributions made to the overall predissociation rate of DCl(+)(A,v(+')) molecules by coupling to repulsive states of (4)Pi, (4)Sigma(-), and (2)Sigma(-) symmetries, all of which are calculated to cross the outer limb of the A (2)Sigma(+) state potential at energies close to that of the v(+')=10 level. Cl(+)((3)P(J)) fragments are detected weakly following excitation to A (2)Sigma(+) state levels with v(+')=0 or 1, Cl(+)((1)D) fragments dominate the ion yield when exciting via 2< or =v(+')< or =6 and via v(+')=9, while Cl(+)((1)S) fragments dominate the Cl(+) images obtained when exciting via levels with v(+')=7 and 8. Analysis of wavelength resolved action spectra for forming these Cl(+) ions and of the resulting Cl(+) ion images shows that (i) these ions all arise via two photon absorption processes, resonance enhanced at the one photon energy by the various A(v(+')<10) levels, (ii) the first A (2)Sigma(+)<--X (2)Pi absorption step is saturated under the conditions required to observe significant two photon dissociation, and (iii) the final absorption step from the resonance enhancing A(v(+')) level involves a parallel transition.  相似文献   

5.
Rotationally resolved pulsed field ionization and zero electronic kinetic energy photoelectron spectra for the transition F(2) (+)(X (2)Pi(g))<--F(2)(X (1)Sigma(g) (+)) have been recorded using the extreme ultraviolet coherence radiation. The vibrational energy spacings, rotational constants, and spin orbit coupling constants for the first three vibrational states of F(2) (+)(X (2)Pi(g)) have been determined accurately. The first adiabatic ionization potential (IP) of F(2) is determined as IP(F(2))=126 585.7+/-0.5 cm(-1). To determine the threshold E(tipp) for ion-pair production of F(2), the images of F(-)((1)S(0)) in the velocity mapping conditions have also been recorded at the photon energy of 126 751 cm(-1). Taking the Stark effect into account, the E(tipp) is determined as E(tipp)(F(2))=126 045+/-8 cm(-1) (15.628+/-0.001 eV). By combing the IP(F(2)) and the E(tipp)(F(2)) determined in this work and together with the reported ionization potential and electronic affinity of the F atom, the bond dissociation energies of F(2) and F(2) (+) are determined as D(0)(F(2))=1.606+/-0.001 eV and D(0)(F(2) (+))=3.334+/-0.001 eV, respectively.  相似文献   

6.
The ion-pair dissociation dynamics of N(2)O -->(XUV) N(2)(+)(X (2)Sigma(g)(+), v) + O(-)((2)P(j)) at 16.248, 16.271, 16.389, and 16.411 eV have been studied using the velocity map imaging method and tunable XUV laser. The electronic structures of the ion-pair states have been studied by employing the ab initio quantum chemical calculation. The translational energy distributions and the angular distributions of the photofragments have been measured. The results show that about 40% of available energies are transformed into the translational energies, and the first excited vibrational states are populated most strongly for all four excitation energies. The anisotropy parameters beta are approximately 1. The ab initio calculations at the level of CASSCF6-311++g(3df) show that the equilibrium geometries of the ion-pair states are nonlinear with bond lengths R(N-N) = 1.10 A, R(N-O) = 2.15 A, and bond angle N-N-O = 103 degrees, respectively. The ion-pair states are formed by electron migration from the bonding sigma orbital of N[triple bond]N to the antibonding sigma orbital localized primarily on the O atom. Combining the experimental and theoretical results, it is concluded that the ion-pair dissociation occurs via predissociation of Rydberg states with (1)Sigma(+) symmetry, which converges to the ion-core N(2)O(+)(A (2)Sigma(+)).  相似文献   

7.
The photodissociation of N(2)O at wavelengths near 130 nm has been investigated by velocity-mapped product imaging. In all, five dissociation channels have been detected, leading to the following products: O((1)S)+N(2)(X (1)Sigma), N((2)D)+NO(X (2)Pi), N((2)P)+NO(X (2)Pi), O((3)P) + N(2)(A (3)Sigma(+) (u)), and O((3)P) + N(2)(B (3)Pi(g)). The most significant channel is to the products O((1)S) + N(2)(X(1)Sigma), with strong vibrational excitation in the N(2). The O((3)P) + N(2)(A,B):N((2)D,(2)P) + NO branching ratio is measured to be 1.4 +/- 0.5, while the N(2)(A) + O((3)P(J)):N(2)(B) + O((3)P(J)) branching ratio is determined to be 0.84+/-0.09. The spin-orbit distributions for the O((3)P(J)), N((2)P(J)), and N((2)D(J)) products were also determined. The angular distributions of the products are in qualitative agreement with excitation to the N(2)O(D (1)Sigma(+)) state, with participation as well by the (3)Pi(v) state.  相似文献   

8.
The H(+) velocity map images from the ion-pair dissociation of H(2)S + hν → SH(-)(X(1)Σ(+), υ = 0, 1) + H(+) have been measured at the excitation energies 15.259, 15.395, and 15.547 eV, respectively. The experimental results show that most of the available energies are transformed into the translational energies. The angular distributions of the fragments SH(-)(X(1)Σ(+), υ = 0) indicate that the dissociation occurs via pure parallel transition with limiting anisotropy parameter of +2. Because the ion-pair dissociation usually occurs via the predissociation of Rydberg states, this suggests that the ion cores of the excited Rydberg states have linear geometries. The geometries and electronic structures of the linear H(2)S(+) have been calculated employing the quantum chemistry calculation method at the CASPT2/avqz level. The electronic structures for the ion-pair states have been calculated at the CASSCF/avtz level, which indicates that the equilibrium geometries of the ion-pair states have bent geometries.  相似文献   

9.
The CoNe(+) diatomic cation is produced by laser vaporization in a pulsed-nozzle source and studied with photodissociation spectroscopy at visible wavelengths. Vibronic structure is assigned to the (3)Π(2) ← (3)Δ(3) band system correlating to the Co(+)((3)P(2) ← (3)F(4)) + Ne asymptote. The origin band (13,529 cm(-1)) and a progression of 14 other vibrational bands are detected ending in the dissociation limit at 14,191 cm(-1). The excited state dissociation energy is therefore D(0)(') = 662 cm(-1), and an energetic cycle using this, the origin band energy, and the atomic transition produces a ground state dissociation energy of D(0)(") = 930 cm(-1). The excited state vibrational frequency is 116.1 cm(-1). A rotationally resolved study of the origin band confirms the electronic transition assignment and provides the bond distance of r(0)(") = 2.36 ?. The properties of CoNe(+) are compared to those of other CoRG(+) and MNe(+) complexes studied previously.  相似文献   

10.
Vibrational levels of the F(')0(u)(+)((1)D(2)), F0(u)(+)((3)P(0)), and D0(u)(+)((3)P(2)) ion-pair states of (35)Cl(2) and (35)Cl(37)Cl in the range 62,500-67,600 cm(-1) have been observed using (1 + 2(')) optical-optical double resonance excitation with mass-resolved ion detection. The strong F(')0(u)(+)((1)D(2))/F0(u)(+)((3)P(0)) coupling has been modelled by a coupled two-state calculation. An optimized fit of the experimental data used an F(')0(u)(+)((1)D(2)) state potential with a T(e) of 65,177 cm(-1) and an R(e) of ≈2.636 ? with a coupling constant of ≈430 cm(-1). The calculation assigns the first observed members of the F(')0(u)(+)((1)D(2)) state progression of (35)Cl(2) and (35)Cl(37)Cl at 64,998 and 65,094 cm(-1), respectively, as transitions to v = 0.  相似文献   

11.
We report the analysis of the 2g(1D) ion-pair state of I2 by perturbation-facilitated optical-optical double resonance. The present study began with the observation of the 2g(1D)-A' 3Pi(2u) emission at around 230 nm during the analysis of the ultraviolet emissions originating form the 1u(1D) ion-pair state. The identification of this new transition helped us to specify the wavelengths for detecting the 2g(1D) state by emission, and also to estimate its absolute position. The intermediate states used to observe the 2g(1D) state were the B 3Pi(0u(+))-b' 2u mixed states by the hyperfine interaction, which allowed us to combine the X 1Sigmag(+) ground state with the 2g(1D) state in the (1+1) photon excitation following the optical selection rules for one-photon transitions: 2g(1D)<--b' 2u-B 3Pi(0u(+))<--X 1Sigmag(+). Our analysis covered the 2g(1D) state in the 0< or =v< or =12 and 9< or =J< or =40 ranges. The molecular constants and Rydberg-Klein-Rees (RKR) potential of the 2g(1D) state were reported. We discussed the occurrence of the 2g(1D)-A' 3Pi(2u) emission, when exciting to the 1u(1D) v=0 state, and attributed it to the g/u mixing between the 2g(1D) and 1u(1D) states by the hyperfine interaction. The effect of the perturbation on measured line intensities and lifetimes was evident.  相似文献   

12.
The photodissociation of CS(2) has been investigated using velocity-map ion imaging of the S((1)D(2)) atomic photofragments following excitation at 193 nm and at longer wavelengths close to the S((1)D(2)) channel threshold. The experiments probe regions both above and below the energetic barrier to linearity on the (1)Σ(u) (+)((1)B(2)) potential energy surface. The imaging data in both regions indicate that the electronic angular momentum of the S((1)D(2)) atom products is unpolarized, but also reveal different dissociation dynamics in the two regions. Excitation above the barrier to linearity yields an inverted CS((1)Σ(+)) vibrational population distribution, whereas the long-wavelength state-to-state results following excitation below the barrier reveal CS((1)Σ(+))(v, J) coproduct state distributions which are consistent with a statistical partitioning of the energy. Below the barrier, photofragment excitation spectra point to an enhancement of the singlet channel for K = 1, relative to K = 0, where K is the projection of the angular momentum along the principal axis, in agreement with previous work. However, the CS cofragment product state distributions are found to be insensitive to K. It is proposed that dissociation below the barrier to linearity occurs primarily on a surface with a significant potential energy well and without an exit channel barrier, such as that for the ground electronic state. However, oscillatory structure is also observed in the kinetic energy release distributions, which is shown to be consistent with a mapping of parent molecule bending motion. This could indicate the operation of competing direct and indirect dissociation mechanisms below the barrier to linearity.  相似文献   

13.
In the wavelength range of 235-354 nm, we have obtained the mass-resolved [1+1] two-photon dissociation spectra of CO(2) (+) via A (2)Pi(u,12)(upsilon(1)upsilon(2)0)<--X (2)Pi(g,12)(000) transitions by preparing CO(2) (+) ions in the X (2)Pi(g,12)(000) state via [3+1] multiphoton ionization of CO(2) molecules at 333.06 nm. The vibronic bands of (upsilon(1)20;upsilon(1)=0-11)micro (2)Pi(12) and (upsilon(1)20;upsilon(1)=0-6)kappa (2)Pi(12) involving the bending mode of CO(2) (+)(A (2)Pi(u,12)) were assigned. The spectroscopic constants of T(e)=27 908.9+/-1.1 cm(-1) [above CO(2) (+)(X (2)Pi(g,12))], nu(1)=1126.00+/-0.36 cm(-1), chi(11)=-1.602+/-0.005 cm(-1), nu(2)(micro (2)Pi(12))=402.5+/-13.3 cm(-1), and nu(2)(kappa (2)Pi(12))=493.1+/-23.6 cm(-1) for CO(2) (+)(A (2)Pi(u,12)) are deduced from the data of the A (2)Pi(u,12)(upsilon(1)upsilon(2)0)<--X (2)Pi(g,12)(000) transitions. The observed intensity reversal between (500) (2)Pi(12) and (420)micro (2)Pi(12) can be attributed to the conformational variation of CO(2) (+)(A (2)Pi(u,12)) from linear to bent, then the conversion potential barrier is estimated to be 5209 cm(-1) above CO(2) (+)(A (2)Pi(u,12)(000)). The wavelength and level dependence of the photofragment branching ratios have been measured and the dissociation dynamics of CO(2) (+) via A (2)Pi(u,12) state is discussed.  相似文献   

14.
The dissociation dynamics of Br2 molecules induced by two femtosecond pump pulses are studied based on the calculation of time-dependent quantum wave packet. Perpendicular transition from X 1Sigma g+ to A 3Pi 1u+ and 1Pi 1u+ and parallel transition from X 1Sigma g+ to B 3Pi 0u+, involving two product channels Br (2P3/2)+Br (2P3/2) and Br (2P3/2)+Br* (2P1/2), respectively, are taken into account. Two pump pulses create dissociating wave packets interfering with each other. By varying laser parameters, the interference of dissociating wave packets can be controlled, and the dissociation probabilities of Br2 molecules on the three excited states can be changed to different degrees. The branching ratio of Br*/(Br+Br*) is calculated as a function of pulse delay time and phase difference.  相似文献   

15.
The photodissociation of gas-phase I(2)Br(-) was investigated using fast beam photofragment translational spectroscopy. Anions were photodissociated from 300 to 270 nm (4.13-4.59 eV) and the recoiling photofragments were detected in coincidence by a time- and position-sensitive detector. Both two- and three-body channels were observed throughout the energy range probed. Analysis of the two-body dissociation showed evidence for four distinct channels: Br(-) + I(2), I(-) + IBr, Br+I(2) (-), and I + IBr(-). In three-body dissociation, Br((2)P(3∕2)) + I((2)P(3∕2)) + I(-) and Br(-) + I((2)P(3∕2)) + I((2)P(3∕2)) were produced primarily from a concerted decay mechanism. A sequential decay mechanism was also observed and attributed to Br(-)((1)S)+I(2)(B(3)Π(0u) (+)) followed by predissociation of I(2)(B).  相似文献   

16.
The photodissociation of NO(3) has been studied using velocity map ion imaging. Measurements of the NO(2) + O channel reveal statistical branching ratios of the O((3)P(J)) fine-structure states, isotropic angular distributions, and low product translational energy consistent with barrierless dissociation along the ground state potential surface. There is clear evidence for two distinct pathways to the formation of NO + O(2) products. The dominant pathway (>70% yield) is characterized by vibrationally excited O(2)((3)Σ(g)(-), v = 5-10) and rotationally cold NO((2)Π), while the second pathway is characterized by O(2)((3)Σ(g)(-), v = 0-4) and rotationally hotter NO((2)Π) fragments. We speculate the first pathway has many similarities to the "roaming" dynamics recently implicated in several systems. The rotational angular momentum of the molecular fragments is positively correlated for this channel, suggesting geometric constraints in the dissociation. The second pathway results in almost exclusive formation of NO((2)Π, v = 0). Although product state correlations support dissociation via an as yet unidentified three-center transition state, theoretical confirmation is needed.  相似文献   

17.
Using high-resolution Fourier transform emission techniques, we have resolved rotational structure in the D0(u)(+)((3)P(2)) → X0(g)(+) emission following collisional transfer from the E0(g)(+)((3)P(2)) state in I(2). The P:R branch ratios in the E0(g)(+)((3)P(2)) → D0(u)(+)((3)P(2)) transfer are found to vary enormously with v(E) and v(D). We show that the observed intensities are all consistent with the transfer being dominated by long-range, near-resonant collisions with residual H(2)O. Unequal P:R branch ratios in the E0(g)(+)((3)P(2)) → A1(u) emission have been shown to result from mixing of the E0(g)(+)((3)P(2)) and β1(g)((3)P(2)) states via Ω-uncoupling.  相似文献   

18.
The multireference spin-orbit configuration interaction method is employed to calculate potential energy curves for the ground and low-lying excited states of the KrH(+) cation. For the first time, the spin-orbit interaction is taken into account and electric dipole moments are computed for transitions to the states responsible for the first absorption continuum (A band) of KrH(+). On this basis, the partial and total absorption spectra in this energy range are obtained. It is shown that the A-band absorption is dominated by the parallel A (1)Sigma(+)<--X (1)Sigma(+) transition. In the low-energy part of the band (<83x10(3) cm(-1)) the absorption is mainly caused by the spin-forbidden b (3)Pi(0(+) )<--X (1)Sigma(+) excitation, while perpendicular transitions to the B (1)Pi and b (3)Pi(1) states are significantly weaker. The branching ratio Gamma for the photodissociation products is calculated and it is shown to increase smoothly from 0 in the red tail of the band to 1 at E>or=90x10(3) cm(-1). The latter value corresponds to the exclusive formation of the spin-excited Kr(+)((2)P(12)) ions, which may be used to obtain laser generation on the Kr(+)((2)P(12)-(2)P(32)) transition.  相似文献   

19.
Single-photon excitation spectra from the lowest singlet (1)D(2) level of sulfur atoms were recorded with a tunable vacuum ultraviolet (VUV) radiation source generated by frequency tripling in noble gases. The photolysis of CS(2) at 193 nm was used to produce the singlet S((1)D(2)) sulfur atoms that were then excited to neutral superexcited states with the tunable VUV radiation. These superexcited states undergo autoionization into the first ionization continuum state of S(+)((4)S(3/2) (o))+e(-), which is not directly accessible from the S((1)D(2)) state via an allowed transition. The excitation spectra were recorded by monitoring the S(+) signal in a velocity imaging apparatus while scanning the VUV excitation wavelength. Three new lines were observed in the spectra which have not been previously reported. The full widths at half maximum (FWHM) of each of the observed transitions were determined by fitting the profiles of each absorption resonances with the Fano formula. Autoionization lifetimes tau of these singlet superexcited states were obtained from FWHM using the Uncertainty Principle. Abnormal autoionization lifetimes were found for the 3s(2)3p(3)((2)D(o))nd((1)D(2)) and the 3s(2)3p(3)((2)D(o))ns((1)D(2)) Rydberg series, in which tau(5d) and tau(7s) are shorter than tau(4d) and tau(6s), respectively. This is contrary to the well-known scaling law of tau(n*) proportional, variantn(*3), which should be followed within a series unless there exist perturbations from other series or new channels open up to which some members of the series can decay. Possible perturbations from the nearby triplet series are suspected for causing the broadening of the 5d and 7s levels.  相似文献   

20.
The time-slice velocity-map ion imaging and the resonant four-wave mixing techniques are combined to study the photodissociation of NO in the vacuum ultraviolet (VUV) region around 13.5 eV above the ionization potential. The neutral atoms, i.e., N((2)D(o)), O((3)P(2)), O((3)P(1)), O((3)P(0)), and O((1)D(2)), are probed by exciting an autoionization line of O((1)D(2)) or N((2)D(o)), or an intermediate Rydberg state of O((3)P(0,1,2)). Old and new autoionization lines of O((1)D(2)) and N((2)D(o)) in this region have been measured and newer frequencies are given for them. The photodissociation channels producing N((2)D(o)) + O((3)P), N((2)D(o)) + O((1)D(2)), N((2)D(o)) + O((1)S(0)), and N((2)P(o)) + O((3)P) have all been identified. This is the first time that a single VUV photon has been used to study the photodissociation of NO in this energy region. Our measurements of the angular distributions show that the recoil anisotropy parameters (β) for all the dissociation channels except for the N((2)D(o)) + O((1)S(0)) channel are minus at each of the wavelengths used in the present study. Thus direct excitation of NO by a single VUV photon in this energy region leads to excitation of states with Σ or Δ symmetry (ΔΩ = ±1), explaining the observed perpendicular transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号