首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
为了研究流场中碳纤维增强环氧树脂复合材料在激光辐照时产生的烧蚀羽烟对入射激光的屏蔽效应,通过对朗伯-比尔定律进行分析,得到了评价羽烟消光性能的平均质量消光系数的表达式,其与羽烟场浓度和激光透过率相关。采用激光诱导炽光法(LII)和激光消光法,搭建了羽烟消光性能联合诊断实验平台,使待测激光落于LII的激发光平面上,通过同步采集待测激光的透过率和LII信号,获得激发光平面上羽烟浓度场和激光消光比,得到羽烟在不同气流速度下的平均质量消光系数。实验得到气流速度为7,10,20m/s时羽烟对1064nm激光的归一化质量消光系数分别为2.51,1.08,1.00。实验发现,质量消光系数受到气流速度影响,当气流速度较低时质量消光系数曲线波动幅度大,且曲线均值较大;当气流速度较高时质量消光系数趋于稳定且均值较小。  相似文献   

2.
多波段激光雷达颗粒物质量浓度探测方法   总被引:1,自引:0,他引:1  
为了获得大气颗粒物的质量浓度廓线,提出一种基于多波段激光雷达回波信号的大气气溶胶消光系数与颗粒物质量消光效率相结合的新型算法。该方法利用覆盖紫外到近红外波段的激光雷达作为遥感探测工具,获取气溶胶的消光与后向散射系数,反演得到气溶胶粒子谱分布;同时,根据米散射理论算出气溶胶消光效率,结合粒子谱分布,提出颗粒物质量消光效率模型,从而建立基于消光系数与质量消光效率相结合的反演颗粒物质量浓度的新型数学模型与算法。采用该算法对两组不同天气条件多波段激光雷达实测数据进行反演,并与地表采用的颗粒物浓度对比,证明该方法的可行性,为实现颗粒物质量浓度空间分布的探测提供科学依据和方法论。  相似文献   

3.
用消光系数比表征火灾烟雾的分类特征   总被引:4,自引:0,他引:4       下载免费PDF全文
提出了一种表征火灾烟雾分类特征的方法,采用两个已知波长的消光系数的比值表征火灾烟雾的本质特征.研究表明:两个已知波长的消光系数比仅与烟雾粒子群的粒径分布、平均粒径和折射率有关,排除了烟雾粒子浓度的影响,通过对火灾烟雾进行简单的光学测量和计算,即可得到火灾烟雾的分类特征 关键词: 消光系数比 火灾烟雾 分类特征  相似文献   

4.
大气气溶胶消光特性和折射率的测量   总被引:6,自引:0,他引:6       下载免费PDF全文
 介绍了一种综合利用能见度仪、微脉冲激光雷达和光学粒子计数器测量大气气溶胶折射率的新方法。首先使用能见度仪和激光雷达测量出大气气溶胶的消光系数和消光后向散射比,然后使用粒子计数器测量出粒子谱分布,结合气溶胶粒子折射率,根据球形粒子的米(Mie)散射理论,可以得到气溶胶消光系数和消光后向散射比。通过分析消光系数、消光后向散射比、粒子谱分布和折射率之间的关系,结合已知的消光系数和消光后向散射比,反演出大气气溶胶粒子的折射率。  相似文献   

5.
气溶胶消光系数与质量浓度的相关性研究   总被引:12,自引:4,他引:8  
为了利用激光雷达探测的消光系数垂直分布来反演气溶胶质量浓度的垂直分布,研究气溶胶消光系数与质量浓度之间的关系就显得十分重要.根据Mie散射理论,分析了气溶胶的质量消光系数、消光系数和质量浓度之间的关系,引进了等效参数,分析了Junge指数对等效参数的影响.用实际测量的粒子谱分布、能见度、相对湿度和气溶胶质量浓度验证了气溶胶消光系数和质晕浓度之间的关系.这对利用激光雷达测量的气溶胶消光系数垂直分布来反演气溶胶质量浓度的垂直分布是很有实用价值和指导意义的.  相似文献   

6.
碳纳米管对信息激光的消光系数测试研究   总被引:1,自引:0,他引:1  
消光系数是表示烟幕干扰材料消光性能的重要参数,研究测试了三种不同尺寸的碳纳米管对1.06μm激光的消光系数。利用室内大型烟箱,根据Lambert-Beer定律,通过测量激光透过率和烟幕质量浓度,得到了不同时刻的碳纳米管烟幕对激光的消光系数。结果表明消光系数是一个变量,随碳纳米管材料的时空变化而变化。三种尺寸的碳纳米管对1.06μm激光的平均消光系数分别为1.3568 m2/g、1.3008 m2/g和1.6408m2/g,表明碳纳米管对信息激光具有显著的消光效果。  相似文献   

7.
采用等离子体气相凝聚技术制备了银纳米团簇颗粒,开展了实验条件及工艺参数对团簇平均粒径和粒径分布的影响。利用四极质谱分析仪在线测量了银纳米团簇的粒径尺寸与分布,并与透射电子显微镜(TEM)离线测量值进行比对。研究结果表明:保持其他参数不变时,增大结露区长度或溅射电流,银纳米团簇的平均粒径尺寸将增大;增加氩气流量,银团簇粒子平均粒径也相应增大,但当氩气流量增至60mL/min以上时,其平均粒径反而会减小。而氦气的加入会使平均粒径尺寸减小。在各工艺参数中,溅射电流和氩气流量是影响银纳米团簇平均粒径的主要因素。通过调节工艺条件,获得了平均粒径尺寸为2,4和6nm的银纳米团簇,四极质谱仪监测的粒径分布与TEM离线表征结果总体一致。  相似文献   

8.
基于蒙特卡洛法,对水雾遮蔽热辐射衰减建立了光子状态序列的追踪模型.利用该模型对水雾粒子的多重散射进行模拟,分析了影响水雾消光性能的消光系数、水雾浓度、不对称因子等参数,发现不对称因子也是影响水雾隐身性能的重要参数.研究表明:对于消光系数相同的介质,不对称因子越小越有利于衰减目标热辐射强度,而采用朗伯比尔定律则不能获得此结论;在雾粒子半径远大于红外波长的情况下,提高水雾的浓度并减小粒子半径可有效提高水雾的衰减作用.  相似文献   

9.
人造水雾可有效衰减红外辐射而广泛应用于目标红外隐身领域,获得最佳消光效果的水雾粒子半径分布区间成为国内外研究的重点和难点。在米氏(Mie)理论的基础上给出了粒子消光的物理和数学模型,总结了确定人造水雾最佳消光半径的三个条件,采用散射相函数和消光效率分析相结合的方法,经过Matlab编程计算分析了针对中、远红外波段的水雾粒子最佳消光半径,获得了较为明确的粒径分布区间,给出了中、远红外波段的最佳粒径分布规律。该结论可对舰船及陆路目标的红外隐身及消防灭火研究提供参考。  相似文献   

10.
针对生物粒子凝聚体单体形状和光学特性的复杂多变,构建了5种不同单体形状的生物粒子凝聚体空间结构,并用离散偶极子近似方法计算了生物粒子凝聚体的消光特性参数,分析了不同单体形状生物粒子凝聚体的消光特性差异。计算结果表明:非球形生物粒子凝聚体在将其单体形状等效为球形时,平均质量消光系数的相对偏差绝对值在6%以内;不同单体形状生物粒子凝聚体对光的散射能力不同是消光特性存在差异的主要表现,且通常情况下单体形状越偏离球形,相对偏差越大,因此,由不同单体形状引起的消光特性的差异不应被忽略。此项工作可应用于准确评估和优化生物粒子材料的消光性能。  相似文献   

11.
Soot characterization using multiple techniques has been performed in a series of nitrogen-diluted ethylene coflow laminar diffusion flames. Soot aggregate sizes have been measured in two dimensions, as opposed to traditional point measurements, by a newly developed two-dimensional multi-angle light scattering technique where image processing was applied to align images for Guinier analysis. Extinction measurements have also been performed using spectrally resolved line-of-sight attenuation with an imaging spectrometer. Spectrally and spatially resolved extinction measurements have been obtained as well. Combined with previously obtained time-resolved laser-induced incandescence measurements of primary particle diameters, the scattering and absorption components of extinction can be estimated. The so-called dispersion exponent that describes the wavelength dependence of spectral emissivity was determined in two dimensions and found to improve the accuracy of soot color-ratio pyrometry measurements.  相似文献   

12.
Laser‐induced incandescence (LII) is introduced as a valuable tool for the characterization of nanoparticles. This optical measurement technique is based on the heating of the particles by a short laser pulse and the subsequent detection of the thermal radiation. It has been applied successfully for the investigation of soot in different fields of application, which is described here in the form of an overview with a focus on work done at the LTT‐Erlangen during the last 10 years. In laboratory flames the soot primary particle size, volume concentration, and relative aggregate size have been determined in combination with the number density of primary particles. Furthermore, the primary particle sizes of carbon blacks have been measured in situ and online under laboratory conditions and also in production reactors. Measurements with different types of commercially available carbon black powders, which were dispersed in a measurement chamber yielded a good correlation between LII results and the specified product properties. Particle diameters determined by LII in a furnace black reactor correlate very well with the CTAB‐absorption number, which is a measure for the specific surface area. It turned out that the LII method is not affected by variations of the aggregate structure of the investigated carbon blacks. The LII signal also contains information on the primary particle size distribution, which can be reconstructed by the evaluation of the signal decay time at, at least, two different time intervals. Additionally, soot mass concentrations have been determined inside diesel engines and online measurements were performed in the exhaust gas of such engines for various engine conditions simultaneously providing information about primary particle size, soot volume, and number concentration. The LII results exhibit good correlation with traditional measurement techniques, e.g., filter smoke number measurements. In addition to the soot measurements, primarily tests with other nanoparticles like TiO2 or metal particles are encouraging regarding the applicability of the technique for the characterization of such different types of nanoparticles.  相似文献   

13.
An improved aggregate-based low-fluence laser-induced incandescence (LII) model has been developed. The shielding effect in heat conduction between aggregated soot particles and the surrounding gas was modeled using the concept of the equivalent heat transfer sphere. The diameter of such an equivalent sphere was determined from direct simulation Monte Carlo calculations in the free molecular regime as functions of the aggregate size and the thermal accommodation coefficient of soot. Both the primary soot particle diameter and the aggregate size distributions are assumed to be lognormal. The effective temperature of a soot particle ensemble containing different primary particle diameters and aggregate sizes in the laser probe volume was calculated based on the ratio of the total thermal radiation intensities of soot particles at 400 and 780 nm to simulate the experimentally measured soot particle temperature using two-color optical pyrometry. The effect of primary particle diameter polydispersity is in general important and should be considered. The effect of aggregate size polydispersity is relatively unimportant when the heat conduction between the primary particles and the surrounding gas takes place in the free-molecular regime; however, it starts to become important when the heat conduction process occurs in the near transition regime. The model developed in this study was also applied to the re-determination of the thermal accommodation coefficient of soot in an atmospheric pressure laminar ethylene diffusion flame. PACS 44.05.+e; 61.46.Df; 65.80.+n  相似文献   

14.
It is increasingly recognized that soot particles play an important role in the radiative heat transfer from flames and smoke. After their formation, these minute particles usually conglomerate into different forms, with the limiting shapes being the spheres and long chains which can be modeled as infinite cylinders. The present work analyzes the effect of soot shape on soot radiation. The spectral extinction coefficient of spheres, being lower than that of the cylindrical particles, falls off rapidly in the near i.r. The shape effect on soot radiation is found to be more pronounced at low temperatures than at high temperatures. In flame radiation calculations the radiative contribution of the various conglomerated soot shapes can be properly accounted for by assuming spherical and polydisperse soot particles. Based on the extinction characteristics of the particles, an experimental method for determining the amount of spherical and cylindrical particles in a soot cloud is suggested.  相似文献   

15.
Scattering and propagation of terahertz pulses in random soot aggregate systems are studied by using the generalized multi-particle Mie-solution(GMM) and the pulse propagation theory. Soot aggregates are obtained by the diffusion-limited aggregation(DLA) model. For a soot aggregate in soot aggregate systems, scattering characteristics are analyzed by using the GMM. Scattering intensities versus scattering angles are given. The effects of different positions of the aggregate on the scattering intensities, scattering cross sections, extinction cross sections, and absorption cross sections are computed and compared. Based on pulse propagation in random media, the transmission of terahertz pulses in random soot aggregate systems is determined by the two-frequency mutual coherence function. Numerical simulations and analysis are given for terahertz pulses(0.7956 THz).  相似文献   

16.
This paper describes the applicability of laser-induced incandescence (LII) as a measurement technique for primary soot particle sizes at elevated pressure. A high-pressure burner was constructed that provides stable, laminar, sooting, premixed ethylene/air flames at 1–10 bar. An LII model was set up that includes different heat-conduction sub-models and used an accommodation coefficient of 0.25 for all pressures studied. Based on this model experimental time-resolved LII signals recorded at different positions in the flame were evaluated with respect to the mean particle diameter of a log-normal particle-size distribution. The resulting primary particle sizes were compared to results from TEM images of soot samples that were collected thermophoretically from the high-pressure flame. The LII results are in good agreement with the mean primary particle sizes of a log-normal particle-size distribution obtained from the TEM-data for all pressures, if the LII signals are evaluated with the heat-conduction model of Fuchs combined with an aggregate sub-model that describes the reduced heat conduction of aggregated primary soot particles. The model, called LIISim, is available online via a web interface. PACS 65.80.+n; 78.20.Nv; 42.62.-b; 47.70.Pq  相似文献   

17.
Soot aggregate formation and size distribution in a laminar ethylene/air coflow diffusion flame is modeled with a PAH-based soot model and an advanced sectional aerosol dynamics model. The mass range of solid soot phase is divided into 35 discrete sections and two variables are solved for in each section. The coagulation kernel of soot aggregates is calculated for the entire Knudsen number regime. Radiation from gaseous species and soot are calculated by a discrete-ordinate method with a statistical narrow-band correlated-k based band model. The discretized sectional soot equations are solved simultaneously to ensure convergence. Parallel computation with the domain decomposition method is used to save computational time. The flame temperature, soot volume fraction, primary particle size and number density are well reproduced. The number of primary particles per aggregate is overpredicted. This discrepancy is presumably associated with the unitary coagulation efficiency assumption in the current sectional model. Along the maximum soot volume fraction pathline, the number-based and mass-based aggregate size distribution functions are found to evolve from unimodal to bimodal and finally to unimodal again. The different shapes of these two aggregate size distribution functions indicate that the total number and mass of aggregates are dominated by aggregates of different sizes. The PAH-soot condensation efficiency γ is found to have a small effect on soot formation when γ is larger than 0.5. However, the soot level and primary particle number density are significantly overpredicted if the PAH-soot condensation process is neglected. Generally, larger γ predicts lower soot level and primary particle number density. Further study on soot aggregate coagulation efficiency should be pursued and more experimental data on soot aggregate structure and size distribution are needed for improving the current sectional soot model and for better understanding the complex soot aggregation phenomenon.  相似文献   

18.
The refractive index of soot is an essential parameter for its optical diagnostics. It is necessary for quantitative interpretation of LII (Laser Induced Incandescence) signals, light scattering or extinction measurements as well as for emissivity calculations. The most cited values have been determined by intrusive methods or without taking into account the soot size distribution and its specific morphology. In the present study, soot generated by the combustion of diesel and diesel/rapeseed methyl ester (RME) mixture (70% diesel and 30% RME) are extensively characterized by taking into account the morphology, the aggregate size distribution, the mass fraction and the spectral dispersion of light. The refractive index m for wavelengths λ between 300 and 1000 nm is determined for diesel and diester fuels by both in-situ and ex-situ methods. The ex-situ method is based on the interpretation of extinction spectra by taking into account soot sizes and fractal morphology with the RDG-FA (Rayleigh–Debye–Gans for Fractal Aggregate) theory. The in-situ approach is based on the comparison of the LII signals obtained with two different excitation wavelengths. The absorption function E(m) and the scattering function F(m) are examined. This study reveals similar optical properties of soot particles generated by both studied fuels even at ambient and flame temperatures. The function E(m) is shown to reach a maximum for λ=250 nm and to tend toward a plateau-like behavior close to E(m)=0.3 for higher wavelength (600<λ (nm)<1000). The function F(m) is found to be quite constant for 400<λ (nm)<1000 and equal to 0.31.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号