首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 510 毫秒
1.
An electrochemical approach to fabricate a nanostructured Fe/Pt-Fe catalyst through electrodepo-sition followed by galvanic replacement is presented. An Fe/Pt-Fe nanostructured electrode was prepared by deposition of Fe-Zn onto a Fe electrode surface, followed by replacement of the Zn by Pt at open-circuit potential in a Pt-containing alkaline solution. Scanning electron microscopy and energy-dispersive X-ray techniques reveal that the Fe/Pt-Fe electrode is porous and contains Pt. The electrocatalytic activity of the Fe/Pt-Fe electrode for oxidation of methanol was examined by cyclic voltammetry and chronoamperometry. The electrooxidation current on the Fe/Pt-Fe catalyst is much higher than that on flat Pt and smooth Fe catalysts. The onset potential and peak potential on the Fe/Pt-Fe catalyst are more negative than those on flat Pt and smooth Fe electrodes for methanol electrooxidation. All results show that this nanostructured Fe/Pt-Fe electrode is very attractive for integrated fuel cell applications in alkaline media.  相似文献   

2.
In this work,fullerene was modified by platinum,ruthenium,tin and tungsten nanoparticles.The material was characterized by XRD,ICP-OES and TEM micrograph.The average nanoparticle size on fullerene was 5-8 nm.The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell.A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry.The catalyst showed good reactivity for methanol oxidation.  相似文献   

3.
Gold nanoparticles (AuNPs)/chitosan (CS)/reduced graphene oxide (RGO) modified electrode was prepared. The electrochemical behaviors of bergenin on this modified electrode was investigated by cyclic voltammetry. The results showed that the proposed electrode exhibited an obvious electrocatalytic ability to the oxidation of bergenin. The differential pulse voltammetry was employed to detect bergenin in 0.1 mol/L phosphate buffer solution (pH 6.0). A good linear relationship between the oxidation peak current and the concentration of bergenin was found in the range of 2.0×10-7-1.2×10-6 mol/L with the detection limit of 6.0×10-8 mol/L (S/N=3).The prepared electrode had good anti-interference ability and potential application in the actual detection of bergenin. © 2023, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

4.
Electro-oxidation of methanol was studied on titanium supported nanocrystallite Pt and Ptx-Sny catalysts prepared by electrodeposition techniques. Their electro-catalytic activities were studied in 0.5mol/L H2SO4 and compared to those of a smooth Pt, Pt/Pt and Pt-Sn/Pt electrodes. Platinum was deposited on Ti by galvanostatic and potentiostatic techniques. X-ray diffractometer (XRD) and energy dispersive X-ray (EDX) techniques were applied in order to investigate the chemical composition and the phase structure of the modified electrodes. Scanning electron microscopy (SEM) was used to characterize the surface morphology and to correlate the results obtained from the two electrochemical deposition methods. Results show that modified Pt/Ti electrodes prepared by the two methods have comparable performance and enhanced catalytic activity towards methanol electro-oxidation compared to Pt/Pt and smooth Pt electrodes. Steady state Tafel plots experiments show a higher rate of methanol oxidation on a Pt/Ti catalyst than that on a smooth Pt.  Introduction of a small amount of Sn deposited with Pt improves the catalytic activity and the stability of prepared electrode with time as indicated from the cyclic votlammetry and the chronoamperometric experiments. The effect of variations in the composition for binary catalysts of the type Ptx-Sny/Ti towards the methanol oxidation reaction is reported. Consequently, the Ptx-Sny/Ti (x∶y (8∶1), molar ratio) catalyst is a very promising one for methanol oxidation.  相似文献   

5.
In a 0.02 mol/L Na2HPO4-KH2PO4(PBS) buffer solution(pH=6.82), the electrochemical behavior of mitoxantrone was studied by linear-sweep voltammetry and cyclic voltammetry at a Pt/C ion implantation modified microelectrode. A sensitive reduction peak was observed. The peak potential was -0.72 V(vs.SCE), the peak current was proportional to the concentration of mitoxantrone within the ranges of 7.0×10-8-9.0×10-7 mol/L and 1.0×10-6-2.4×10-5 mol/L, with a detection limit of 4.0×10-8 mol/L. The linear correlation coefficients were 0.9994 and 0.9992, respectively. This method has been applied to the direct determination of mitoxantrone in simulated urine. The recoveries were in the range from 96.2% to 105.9%. The reduction process was a quasi-reversible one with adsorptive characteristics at the Pt/C microelectrode. The electrode reaction rate constant ks and the electron transfer coefficient α of the system were determined to be 4.5 and 0.65 s-1, respectively. The experiments showed that Pt element had surely been implanted into the surface of the carbon fiber, and the atomic Pt improved the electrocatalytic activity. The Pt/C microelectrode had a good stability and reproducibility.  相似文献   

6.
A nanostructured Ni/Pd-Ni catalyst with high activity for methanol oxidation in alkaline solution was prepared by electrodeposition followed by galvanic replacement, that is, electrodeposition of Ni-Zn on a Ni coating with subsequent replacement of the Zn by Pd at the open circuit potential in a Pd-containing alkaline solution. The surface morphology and composition of the coatings were examined by energy dispersive X-ray spectroscopy and scanning electron microscopy. The Ni/Pd-Ni coatings were porous and were composed of discrete Pd nanoparticles of about 58 nm. The electrocatalytic activity of the Ni/Pd-Ni electrodes for the oxidation of methanol was examined by cyclic voltammetry and electrochemical impedance spectroscopy. The onset potentials for methanol oxidation on Ni/Pd-Ni were 0.077 V and 0.884 V, which were lower than those for flat Pd and smooth Ni electrodes, respectively. The anodic peak current densities of these electrodes were 4.33 and 8.34 times higher than those of flat Pd (58.4 mA/cm2 vs 13.47 mA/cm2) and smooth Ni (58.4 mA/cm2 vs 7 mA/cm2). The nanostructured Ni/Pd-Ni electrode is a promising catalyst for methanol oxidation in alkaline media for fuel cell application.  相似文献   

7.
The metnoas or rotating ring-disc electrode(RRDE) ana cyclic voltammetry were used to study the oxidation of cgsteine on heat-treated cobalt tetramethoxyphenyl porphyrin adsorbed on graphite(Co-TMPP/graphite) in solutions of various pH.Experimental results showed that Co-TMPP/graphite exhibits significant catalytic activity for cysteine oxidation in solutions with various pH.The current efficiency of cysteine oxidation on Co-TMPP/graphite in basic media is more than 90%.It was found that the kinetics of cysteine oxidation on Co-TMPP/graphite is a simple irreversible reaction controlled by rate of charge transfer.The standard rate,constants(k) of cysteine oxidation were calculated and the reaction mechanism of this reaction in solutions of various pH wes discussed.  相似文献   

8.
<正>The electrocatalytic oxidation of methanol at the platinum electrode modified with Eu-Fe cyanide-bridged binuclear complexes (Eu-Fe film) was investigated for the first time by cyclic voltammetry.Compared with the bare platinum electrode,the results showed that the modified electrode had excellent electrocatalytic activity for the oxidation of methanol;the oxidation peak potential shifted more negatively and the peak current increased about twenty times.The electrooxidation of methanol at the modified electrode with Eu-Fe cyanide-bridged binuclear complexes material exhibited the better tolerance capacity to poison of intermediate species;the peak current was proportional to the concentration of methanol in the range of 0.5-2.0mol/L (R~2 = 0.9991,n =7),which was a comparatively wider linear range.Moreover,based on the linear relationship between the peak current and the square root of scan rate,electrocatalytic oxidation process of methanol was confirmed to be a diffusion control process.Furthermore,according to the counting of electron transfer number(n_α) in the rate-limiting step and the slope of linear equation between acidity of electrolyte and the oxidation peak potential(E_p),the possible mechanism of the electrooxidation of methanol at the modified electrode was primarily discussed.  相似文献   

9.
A novel plastic/multi-walled carbon nanotube(MWNTs)-nickel(Ni)-platinum(Pt) electrode(PMNP) is prepared by chemical-reducing Pt onto the surface of Ni film covered plastic/MWNTs(PM) substrate. The MWNTs are adhered by a piece of commercial double faced adhesive tape on the surface of plastic paper and the Ni film is prepared by a simple electrodeposition method. The morphology and phase structure of the PMNP electrode are characterized by scanning electron microscopy,transmission electron microscope and X-ray diffractometer. The catalytic activity of the PMNP electrode for Na BH4 electrooxidation is investigated by means of cyclic voltammetry and chronoamperometry. The catalyst combines tightly with the plastic paper and exhibits a good stability. MWNTs serve as both conductive material and hydrogen storage material and the Ni film and Pt are employed as electrochemical catalysts. The PMNP electrode exhibits a high electrocatalytic performance and the oxidation current density reaches to 10.76 A/(mg·cm) in 0.1 mol/dm3 Na BH4at0 V,which is much higher than those in the previous reports. The using of waste plastic reduces the discarding of white pollution and consumption of metal resources.  相似文献   

10.
Li  Kun  Su  Min  Yang  Qian  Li  Yueqi  Yu  Hao 《分析试验室》2022,(7):808-814
A nickel-iron hydroxide/multi-walled carbon nanotubes MWCNTscomposite film electrode was prepared by electrochemical derivation of metal hexacyanoferrate in alkaline solution. MWCNTs film modified electrode was prepared by dropping methodthen Ni-Fe bimetal hexacyanoferrateNi-FeHCFnanoparticles were deposited on the surface of MWCNTs by cyclic voltammetry. This Ni-FeHCF/MWCNTs electrode was electrochemically derived in alkaline solution and a MWCNTs composite film electrodeNiOH2-FeOH3 /MWCNTs/ CCEwas obtained. The surface morphology and the electrochemical behavior of this modified electrode were characterized by scanning electron microscopeSEMand cyclic voltammetryCV. This electrode exhibited high catalytic activity for the electrochemical oxidation of urea under the synergistic action of each component. Based on thisthe non-enzymatic electrochemical sensing of urea was established. In 1.0 mol/L KOH solution the linear range of urea by amperometry was between 5.0×10−3 and 2.8 mmol/Land the detection limit was 3.6 μµmol/L. The sensitivity to urea was 54.3 μµA/mmol/L. This electrode could be used for the determination of urea in river water and human urine samples. © 2022, Youke Publishing Co.,Ltd. All rights reserved.  相似文献   

11.
The electrooxidation of ethanol on Pt/ZSM-5 zeolite-C catalyst was investigated in sulfuric acid aqueous solution. Because of high stability in general acidic solution, ZSM-5 zeolite particles were selected as the support and the second catalyst. The micrograph and elemental composition of Pt/ZSM-5 zeolite particles were characterized by scanning electron microscopy and energy disperse X-ray spectroscopy. The electrocatalytic properties of Pt/ZSM-5 zeolite-C catalyst for ethanol oxidation have been investigated by cyclic voltammetry. Under the same Pt-loading mass and experimental conditions for ethanol oxidation, Pt/ZSM-5 zeolite-C catalyst shows higher activity than Pt/C catalyst. Additionally, Pt/ZSM-5 zeolite-C catalyst possesses good long-term cycle stability. The results indicate that Pt/ZSM-5 zeolite-C catalyst may have good potential application in direct ethanol fuel cell.  相似文献   

12.
乙醇在Pt/nanoTiO2-CNT复合催化剂上的电催化氧化   总被引:10,自引:0,他引:10  
通过前驱体Ti(OEt)4直接水解和电化学扫描电沉积法制备在Ti基体上的纳米TiO2-碳纳米管复合膜载Pt(Pt/nanoTiO2-CNT)复合催化剂. 透射电镜 (TEM) 和X射线衍射 (XRD) 结果表明, 锐钛矿型纳米TiO2粒子和Pt纳米粒子(粒径均为5~10 nm)均匀地分散在碳纳米管表面. 通过循环伏安和计时电流法研究表明, Pt/nanoTiO2-CNT 复合催化剂(Pt载量为0.32 mg•cm−2) 具有高达51.8 m2•g−1的电化学活性比表面积, 常温常压下对乙醇的电化学氧化具有高催化活性和稳定性, 乙醇氧化峰电位分别为0.59、0.96和0.24 V, 氧化峰电流密度分别达到−115、−113和−75 mA•cm−2. 复合催化剂对乙醇电氧化的高催化活性可归因于nanoTiO2、CNT和Pt纳米粒子的协同催化作用.  相似文献   

13.
Organic molecule neutral red (NR), as electron transfer mediator, was introduced in the anodic electrocatalyst system for methanol oxidation and the resulting electrode was investigated by cyclic voltammetry, polarization method, and electrochemical impedance spectroscopy. For the same loading mass of platinum catalyst, 1.25 times larger exchange current density, 1.83 times higher specific activity, and better long-term cycle stability can be obtained at Pt/NR/graphite electrode, as compared to the electrode without NR. These results indicate that neutral red plays an important role on the enhanced electrocatalytic activity of platinum catalyst for methanol oxidation.  相似文献   

14.
《Electroanalysis》2005,17(10):857-861
The carbon nanotubes decorated nanoplatinum (CNT‐Pt) were prepared using a chemical reduction method and a novel base electrode was constructed by intercalating CNT‐Pt on the surface of a waxed graphite electrode. The results showed that the nano‐particles of platinum at a waxed graphite electrode exhibits high catalytic activity for the reduction of hydrogen peroxide. The cholesterol oxidase (ChOx), chosen as a model enzyme, was immobilized with sol‐gel on the CNT‐Pt base electrode to construct a biosensor. The current response of the biosensor for cholesterol was very rapid (<20 s). The linear range for cholesterol measurement was 4.0×10?6 mol/L ?1.0×10?4 mol/L with a detection limit of 1.4×10?6 mol/L. The experiments also showed that the ChOx/sol‐gel/CNT‐Pt biosensor was sensitive and stable in detecting cholesterol in serum samples.  相似文献   

15.
以天然石墨为原料,采用改进的Hummers法制备氧化石墨.然后采用简单的一步化学还原法在乙二醇(EG)中同时还原氧化石墨烯(GO)和H2PtCl6制备高分散的铂/还原态氧化石墨烯(Pt/RGO)催化剂.采用傅里叶变换红外(FTIR)光谱、X射线衍射(XRD)和透射电子显微镜(TEM)对催化剂的微结构、组成和形貌进行表征.结果表明, GO已被还原成RGO, Pt纳米粒子均匀分散在RGO表面,粒径约为2.3 nm.采用循环伏安法和计时电流法评价催化剂对甲醇氧化的电催化性能,测试结果表明, Pt/RGO催化剂对甲醇氧化的电催化活性和稳定性与Pt/C和Pt/CNT相比有了很大提高.另外其对甲醇电催化氧化的循环伏安图中正扫峰电流密度(If)和反扫峰电流密度(Ib)的比值高达1.3,分别是Pt/C和Pt/CNT催化剂的2.2和1.9倍,表明Pt/RGO催化剂具有高的抗甲醇氧化中间体COad的中毒能力.  相似文献   

16.
《印度化学会志》2023,100(2):100876
The direct ethanol fuel cell is a green and renewable power source alternative to fossil fuels and produces less emissions compared to a combustion engine. Ethanol can be generated in great quantity from renewable resources like biomass through a fermentation process. Bio-generated ethanol is thus attractive fuel since growing crops for biofuels absorbs much of the carbon dioxide emitted into the atmosphere from the oxidation of ethanol. The platinum and palladium were co-deposited on graphite substrate by the galvanostatic technique and employed as anode catalyst for ethanol electrooxidation. The information on surface morphology, structural characteristics and bulk composition of the catalyst was obtained using scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive X-ray (EDX) spectroscopy. The cyclic voltammetry (CV) were used for the estimation of the electrochemically active surface area (ECSA) of the synthesized catalysts in alkaline medium. The CVs for ethanol oxidation revealed superior catalytic activity of Pt–Pd/C compared to Pd/C and Pt/C. The effect of OH? on ethanol oxidation at Pt–Pd/C catalyst was studied using cyclic voltammetry, quasisteady-state polarization, chronoamperometry, and electrochemical impedance spectroscopy (EIS). The Pt–Pd/C catalyst shows good stability and enhanced electrocatalytic activity is ascribed to the synergistic effect of higher electrochemical surface area, preferred OH? adsorption on the surface and palladium ad-atom contribution on the alloyed surface.  相似文献   

17.
用电化学循环伏安法和计时电位法研究了葡萄糖在碳纳米管/纳米TiO2膜载Pt(CNT/nano-TiO2/Pt)复合电极上的电催化氧化,结果表明,在碱性介质中CNT/nano-TiO2/Pt复合电极对葡萄糖的电氧化具有高催化活性,葡萄糖氧化峰电流密度高达13mA/cm^2,比铂电极上的增大一倍;复合电极性能稳定,抗中毒能力强,不易发生氧化振荡,是葡萄糖燃料电池和葡萄糖传感器的高活性催化电极。  相似文献   

18.
炭黑负载Pt-Sn双金属催化剂对乙醇的电催化氧化性能   总被引:2,自引:0,他引:2  
采用一步还原法(乙二醇为还原剂)与两步还原法(在聚乙烯吡咯烷酮PVP保护下,先用硼氢化钠还原制备Sn溶胶,沉积Pt后用乙二醇还原)制备了炭黑负载Pt-Sn双金属催化剂,利用循环伏安法和计时电流法考察了催化剂制备方法、Pt/Sn原子比、溶液p H值、PVP/Sn质量比、反应介质等对乙醇室温电催化氧化活性和稳定性的影响.以X光衍射、透射电镜及电化学活性面积测定对所得催化剂进行了表征.发现引入Sn明显提高了Pt催化剂对乙醇的电催化活性与稳定性,两步还原法得到的Pt3Sn/C催化剂具有更小的颗粒尺寸,更大的电化学活性面积及更高的乙醇氧化活性与稳定性.与酸性介质相比,该催化剂在碱性介质中的电化学活性更好.  相似文献   

19.
将耐尔兰(Nile Blue, NB)分子修饰到碳纳米管(CNT)表面形成NB-CNT纳米复合体, 谱学结果表明, NB不仅能快速、高效地修饰到CNT表面, 而且还能有效地改善CNT在水溶液中的分散性能. 将NB-CNT修饰到玻碳(GC)电极表面制备了NB-CNT/GC电极, 循环伏安结果显示, 其伏安曲线上不仅表现出一对良好的、几乎对称的NB单体的氧化还原峰, 式量电位E0'几乎不随扫速而变化[其平均值为(-0.422±0.002) V (vs. SCE, 0.1 mol/L PBS, pH 7.0)]; 而且还显示出NB聚合体分子的氧化还原峰, E0'为-0.191 V (100 mV/s时). 进一步的实验结果表明, NB和CNT对NADH(即还原型β-烟酰胺腺嘌呤二核苷酸, 又称还原型辅酶I)的电化学氧化具有协同催化作用, 能使其氧化过电位降低多于560 mV; NB-CNT/GC电极还能较好地响应脱氢酶催化底物氧化过程中体系内NADH浓度的变化. 本文对碳纳米管功能化方法具有简单快速、电极制作容易以及催化效率高等优点, NB-CNT/GC电极有望在制作脱氢酶传感器方面得到应用.  相似文献   

20.
采用化学法制备了乙二胺接枝改性碳纳米管(ED/MWNTs)负载的Pt及Pt-Ru催化剂,并用红外光谱法、透射电镜分析(TEM)及X射线能谱技术对催化剂进行了表征。结果表明:乙二胺对碳纳米管的改性使Pt及Pt-Ru在碳管上的分布更均匀,粒径更小。同时,催化剂对乙醇电催化氧化活性的电化学研究结果表明:乙二胺改性可明显提高Pt-Ru/MWNTs/C 和Pt/MWNTs/C的电催化活性,而且Pt/ED/MWNTs/C的活性甚至比Pt-Ru/MWNTs/C的活性还高。由此,ED/MWNTs作为乙醇电氧化催化剂的载体有着很好的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号