首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Dysphagia is a leading complication in stroke patients causing aspiration pneumonia, malnutrition and increased mortality. Current strategies of swallowing therapy involve on the one hand modification of eating behaviour or swallowing technique and on the other hand facilitation of swallowing with the use of pharyngeal sensory stimulation. Thermal tactile oral stimulation (TTOS) is an established method to treat patients with neurogenic dysphagia especially if caused by sensory deficits. Little is known about the possible mechanisms by which this interventional therapy may work. We employed whole-head MEG to study changes in cortical activation during self-paced volitional swallowing in fifteen healthy subjects with and without TTOS. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of individual SAM data was performed using a permutation test.  相似文献   

2.

Background  

Sensory input is crucial to the initiation and modulation of swallowing. From a clinical point of view, oropharyngeal sensory deficits have been shown to be an important cause of dysphagia and aspiration in stroke patients. In the present study we therefore investigated effects of functional oropharyngeal disruption on the cortical control of swallowing. We employed whole-head MEG to study cortical activity during self-paced volitional swallowing with and without topical oropharyngeal anesthesia in ten healthy subjects. A simple swallowing screening-test confirmed that anesthesia caused swallowing difficulties with decreased swallowing speed and reduced volume per swallow in all subjects investigated. Data were analyzed by means of synthetic aperture magnetometry (SAM) and the group analysis of the individual SAM data was performed using a permutation test.  相似文献   

3.

Background  

The rapid detection of sensory change is important to survival. The process should relate closely to memory since it requires that the brain separate a new stimulus from an ongoing background or past event. Given that sensory memory monitors current sensory status and works to pick-up changes in real-time, any change detected by this system should evoke a change-related cortical response. To test this hypothesis, we examined whether the single presentation of a sound is enough to elicit a change-related cortical response, and therefore, shape a memory trace enough to separate a subsequent stimulus.  相似文献   

4.

Background  

The affective and motivational relevance of a stimulus has a distinct impact on cortical processing, particularly in sensory areas. However, the spatial and temporal dynamics of this affective modulation of brain activities remains unclear. The purpose of the present study was the development of a paradigm to investigate the affective modulation of cortical networks with a high temporal and spatial resolution. We assessed cortical activity with MEG using a visual steady-state paradigm with affective pictures. A combination of a complex demodulation procedure with a minimum norm estimation was applied to assess the temporal variation of the topography of cortical activity.  相似文献   

5.

Background  

While SII cortex is considered to be the first cortical stage of the pathway that integrates tactile information arising from both sides of the body, SI cortex is generally not considered as a region in which neuronal response is modulated by simultaneous stimulation of bilateral (and mirror-image) skin sites.  相似文献   

6.

Background  

Intermittent theta-burst stimulation (iTBS) is a form of repetitive transcranial magnetic stimulation that may alter cortical excitability in the primary somatosensory cortex (SI). The present study investigated the effects of iTBS on subcortical and early cortical somatosensory evoked potentials (SEPs) recorded over left, iTBS stimulated SI and the right-hemisphere non-stimulated SI. SEPs were recorded before and at 5, 15, and 25 minutes following iTBS.  相似文献   

7.

Background  

The detection of any abrupt change in the environment is important to survival. Since memory of preceding sensory conditions is necessary for detecting changes, such a change-detection system relates closely to the memory system. Here we used an auditory change-related N1 subcomponent (change-N1) of event-related brain potentials to investigate cortical mechanisms underlying change detection and echoic memory.  相似文献   

8.

Background  

Processing of multimodal information is a critical capacity of the human brain, with classic studies showing bimodal stimulation either facilitating or interfering in perceptual processing. Comparing activity to congruent and incongruent bimodal stimuli can reveal sensory dominance in particular cognitive tasks.  相似文献   

9.

Background  

Vestibular reflexes coordinate movements or sensory input with changes in body or head position. Vestibular-evoked responses that involve the extraocular muscles include the vestibulo-ocular reflex (VOR), a compensatory eye movement to stabilize retinal images. Although an angular VOR attributable to semicircular canal stimulation was reported to be absent in free-swimming zebrafish larvae, recent studies reveal that vestibular-induced eye movements can be evoked in zebrafish larvae by both static tilts and dynamic rotations that tilt the head with respect to gravity.  相似文献   

10.

Background  

To investigate the long-latency activities common to all sensory modalities, electroencephalographic responses to auditory (1000 Hz pure tone), tactile (electrical stimulation to the index finger), visual (simple figure of a star), and noxious (intra-epidermal electrical stimulation to the dorsum of the hand) stimuli were recorded from 27 scalp electrodes in 14 healthy volunteers.  相似文献   

11.

Background

Continuous theta burst stimulation (cTBS) is a form of repetitive transcranial magnetic stimulation which has been shown to alter cortical excitability in the upper limb representation of primary somatosensory cortex (SI). However, it is unknown whether cTBS modulates cortical excitability within the lower limb representation in SI. The present study investigates the effects of cTBS over the SI lower limb representation on cortical somatosensory evoked potentials (SEPs) and Hoffmann reflex (H-reflex) following tibial nerve stimulation at the knee. SEPs and H-reflex were recorded before and in four time blocks up to 30 minutes following cTBS targeting the lower limb representation within SI.

Results

Following cTBS, the P1-N1 first cortical potential was significantly decreased at 12?C16 minutes. CTBS also suppressed the P2-N2 second cortical potential for up to 30 minutes following stimulation. The H-reflex remained statistically unchanged following cTBS although there was a modest suppression observed.

Conclusion

We conclude that cTBS decreases cortical excitability of the lower limb representation of SI as evidenced by suppressed SEP amplitude. The duration and magnitude of the cTBS after effects are similar to those observed in upper limb studies.  相似文献   

12.

Background  

Transcranial direct current stimulation (tDCS) is used in human physiological studies and for therapeutic trials in patients with abnormalities of cortical excitability. Its safety profile places tDCS in the pole-position for translating in real-world therapeutic application. However, an episode of transient respiratory depression in a subject receiving tDCS with an extracephalic electrode led to the suggestion that such an electrode montage could modulate the brainstem autonomic centres.  相似文献   

13.

Background  

Brains interact with the world through actions that are implemented by sensory and motor processes. A substantial part of these interactions consists in synchronized goal-directed actions involving two or more individuals. Hyperscanning techniques for assessing fMRI simultaneously from two individuals have been developed. However, EEG recordings that permit the assessment of synchronized neuronal activities at much higher levels of temporal resolution have not yet been simultaneously assessed in multiple individuals and analyzed in the time-frequency domain. In this study, we simultaneously recorded EEG from the brains of each of eight pairs of guitarists playing a short melody together to explore the extent and the functional significance of synchronized cortical activity in the course of interpersonally coordinated actions.  相似文献   

14.

Background  

Previous reports have demonstrated that short durations of vibrotactile stimuli (less than or equal to 2 sec) effectively and consistently modify both the perceptual response in humans as well as the neurophysiological response in somatosensory cortex. The change in cortical response with adaptation has been well established by a number of studies, and other reports have extended those findings in determining that both GABA- and NMDAR-mediated neurotransmission play a significant role in the dynamic response of somatosensory cortical neurons. In this study, we evaluated the impact that dextromethorphan (DXM), an NMDAR antagonist, had on two distinct vibrotactile adaptation tasks.  相似文献   

15.

Background  

Short-term habituation of the startle response represents an elementary form of learning in mammals. The underlying mechanism is located within the primary startle pathway, presumably at sensory synapses on giant neurons in the caudal pontine reticular nucleus (PnC). Short trains of action potentials in sensory afferent fibers induce depression of synaptic responses in PnC giant neurons, a phenomenon that has been proposed to be the cellular correlate for short-term habituation. We address here the question whether both this synaptic depression and the short-term habituation of the startle response are localized at the presynaptic terminals of sensory afferents. If this is confirmed, it would imply that these processes take place prior to multimodal signal integration, rather than occurring at postsynaptic sites on PnC giant neurons that directly drive motor neurons.  相似文献   

16.

Background  

Weak transcortical direct current stimulation (tDCS) applied to the cortex can shift the membrane potential of superficial neurons thereby modulating cortical excitability and activity. Here we test the possibility of modifying ongoing activity associated with working memory by tDCS. The concept of working memory applies to a system that is capable of transiently storing and manipulating information, as an integral part of the human memory system. We applied anodal and cathodal transcranial direct current (tDCS) stimulation (260 μA) bilaterally at fronto-cortical electrode sites on the scalp over 15 min repeatedly (15 sec-on/15 sec-off) as well as sham-tDCS while subjects performed a modified Sternberg task.  相似文献   

17.

Background

Low frequency repetitive transcranial magnetic stimulation (rTMS) has been proposed as an innovative treatment for chronic tinnitus. The aim of the present study was to elucidate the underlying mechanism and to evaluate the relationship between clinical outcome and changes in cortical excitability. We investigated ten patients with chronic tinnitus who participated in a sham-controlled crossover treatment trial. Magnetic-resonance-imaging and positron-emission-tomography guided 1 Hz rTMS were performed over the auditory cortex on 5 consecutive days. Active and sham treatments were separated by one week. Parameters of cortical excitability (motor thresholds, intracortical inhibition, intracortical facilitation, cortical silent period) were measured serially before and after rTMS treatment by using single- and paired-pulse transcranial magnetic stimulation. Clinical improvement was assessed with a standardized tinnitus-questionnaire.

Results

We noted a significant interaction between treatment response and changes in motor cortex excitability during active rTMS. Specifically, clinical improvement was associated with an increase in intracortical inhibition, intracortical facilitation and a prolongation of the cortical silent period. These results indicate that intraindividual changes in cortical excitability may serve as a correlate of response to rTMS treatment.

Conclusion

The observed alterations of cortical excitability suggest that low frequency rTMS may evoke long-term-depression like effects resulting in an improvement of subcortical inhibitory function.  相似文献   

18.

Background  

Visual, tactile and auditory information is processed from the periphery to the cortical level through separate channels that target primary sensory cortices, from which it is further distributed to functionally specialized areas. Multisensory integration is classically assigned to higher hierarchical cortical areas, but there is growing electrophysiological evidence in man and monkey of multimodal interactions in areas thought to be unimodal, interactions that can occur at very short latencies. Such fast timing of multisensory interactions rules out the possibility of an origin in the polymodal areas mediated through back projections, but is rather in favor of heteromodal connections such as the direct projections observed in the monkey, from auditory areas (including the primary auditory cortex AI) directly to the primary visual cortex V1. Based on the existence of such AI to V1 projections, we looked for modulation of neuronal visual responses in V1 by an auditory stimulus in the awake behaving monkey.  相似文献   

19.

Background  

Repeated execution of a tactile task enhances task performance. In the present study we sought to improve tactile performance with unattended activation-based learning processes (i.e., focused stimulation of dermal receptors evoking neural coactivation (CA)). Previous studies show that the application of CA to a single finger reduced the stationary two-point discrimination threshold and significantly increased tactile acuity. These changes were accompanied by an expansion of the cortical finger representation in primary somatosensory cortex (SI). Here we investigated the effect of different types of multifinger CA on the tactile performance of each finger of the right hand.  相似文献   

20.

Background  

A distinctive property of SII is that it is the first cortical stage of the somatosensory projection pathway that integrates information arising from both sides of the body. However, there is very little known about how inputs across the body mid-line are processed within SII.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号