首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Let \({ \mathcal {F}}\) be a saturated formation and G a finite group such that \({N_{G} (H^{\mathcal {F}})/C_{G} (H^{\mathcal {F}})\cong Inn(H^{\mathcal {F}})}\) for every subgroup H of G. If the minimal non-\({ \mathcal {F}}\)-group is soluble, then \({G \in \mathcal {F}}\).  相似文献   

2.
Let \({\mathbb{N}}\) denote the set of all nonnegative integers. Let \({k \ge 3}\) be an integer and \({A_{0} = \{a_{1}, \dots, a_{t}\} (a_{1} < \cdots < a_{t})}\) be a nonnegative set which does not contain an arithmetic progression of length k. We denote \({A = \{a_{1}, a_{2}, \ldots{}\}}\) defined by the following greedy algorithm: if \({l \ge t}\) and \({a_{1}, \dots{}, a_{l}}\) have already been defined, then \({a_{l+1}}\) is the smallest integer \({a > a_{l}}\) such that \({\{a_{1}, \dots, a_{l}\} \cup \{a\}}\) also does not contain a k-term arithmetic progression. This sequence A is called the Stanley sequence of order k generated by A0. We prove some results about various generalizations of the Stanley sequence.  相似文献   

3.
For any prime p and positive integers c, d there is up to isomorphism a unique p-group \({G_{d}^{c}(p)}\) of least order having any (finite) p-group G with rank \({d(G) \le d}\) and Frattini class \({c_{p}(G) \le c}\) as epimorphic image. Here \({c_{p}(G) = n}\) is the least positive integer such that G has a central series of length n with all factors being elementary. This “disposition” p-group \({G_{d}^{c}(p)}\) has been examined quite intensively in the literature, sometimes controversially. The objective of this paper is to present a summary of the known facts, and to add some new results. For instance we show that for \({G = G_{d}^{c}(p)}\) the centralizer \({C_{G}(x) = \langle Z(G), x \rangle}\) whenever \({x \in G}\) is outside the Frattini subgroup, and that for odd p and \({d \ge 2}\) the group \({E = G_{d}^{c+1}(p)/(G_{d}^{c+1}(p))^{p^{c}}}\) is a distinguished Schur cover of G with \({E/Z(E) \cong G}\). We also have a fibre product construction of \({G_{d}^{c+1}(p)}\) in terms of \({G = G_{d}^{c}(p)}\) which might be of interest for Galois theory.  相似文献   

4.
A cycle C in a graph G is dominating if every edge of G is incident with at least one vertex of C. For a set \(\mathcal {H}\) of connected graphs, a graph G is said to be \(\mathcal {H}\)-free if G does not contain any member of \(\mathcal {H}\) as an induced subgraph. When \(|\mathcal {H}| = 2, \mathcal {H}\) is called a forbidden pair. In this paper, we investigate the characterization of the class of the forbidden pairs guaranteeing the existence of a dominating cycle and show the following two results: (i) Every 2-connected \(\{P_{5}, K_{4}^{-}\}\)-free graph contains a longest cycle which is a dominating cycle. (ii) Every 2-connected \(\{P_{5}, W^{*}\}\)-free graph contains a longest cycle which is a dominating cycle. Here \(P_{5}\) is the path of order \(5, K_{4}^{-}\) is the graph obtained from the complete graph of order 4 by removing one edge, and \(W^{*}\) is the graph obtained from two triangles and an edge by identifying one vertex in each.  相似文献   

5.
A theorem due to Stieltjes’ states that if \({\{p_n\}_{n=0}^\infty}\) is any orthogonal sequence then, between any two consecutive zeros of p k , there is at least one zero of p n whenever k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends to the zeros of Gegenbauer polynomials \({C_{n+1}^{\lambda}}\) and \({C_{n-1}^{\lambda+t}}\), \({\lambda > -\frac 12}\), if 0 < tk + 1, and also to the zeros of \({C_{n+1}^{\lambda}}\) and \({C_{n-2}^{\lambda +k}}\) if \({k\in\{1,2,3\}}\). More generally, we prove that Stieltjes interlacing holds between the zeros of the kth derivative of \({C_{n}^{\lambda}}\) and the zeros of \({C_{n+1}^{\lambda}}\), \({k\in\{1,2,\dots,n-1\}}\) and we derive associated polynomials that play an analogous role to the de Boor–Saff polynomials in completing the interlacing process of the zeros.  相似文献   

6.
Let G be a connected graph of order \({n\ge 3}\) and size m and \({f:E(G)\to \mathbb{Z}_n}\) an edge labeling of G. Define a vertex labeling \({f': V(G)\to \mathbb{Z}_n}\) by \({f'(v)= \sum_{u\in N(v)}f(uv)}\) where the sum is computed in \({\mathbb{Z}_n}\) . If f′ is one-to-one, then f is called a modular edge-graceful labeling and G is a modular edge-graceful graph. A graph G is modular edge-graceful if G contains a modular edge-graceful spanning tree. Several classes of modular edge-graceful trees are determined. For a tree T of order n where \({n\not\equiv 2 \pmod 4}\) , it is shown that if T contains at most two even vertices or the set of even vertices of T induces a path, then T is modular edge-graceful. It is also shown that every tree of order n where \({n\not\equiv 2\pmod 4}\) having diameter at most 5 is modular edge-graceful.  相似文献   

7.
A sequence A of nonnegative integers is called complete if all sufficiently large integers can be represented as the sum of distinct terms taken form A. For a sequence \({S=\{s_{1}, s_{2}, \dots\}}\) of positive integers and a positive real number α, let S α denote the sequence \({\{\lfloor\alpha s_{1}\rfloor, \lfloor\alpha s_{2}\rfloor, \dots\}}\), where \({\lfloor x \rfloor}\) denotes the greatest integer not greater than x. Let \({{U_S = \{\alpha \mid S_\alpha} \, is complete\}}\). Hegyvári [6] proved that if \({\lim_{n\to\infty} (s_{n+1}-s_{n})=+ \infty}\), \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma < 2}\), and \({U_{S}\ne\emptyset}\), then \({\mu(U_{S}) > 0}\), where \({\mu(U_{S})}\) is the Lebesgue measure of U S . Yong-Gao Chen and the first author [4] proved that, if \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma \leqq 7/4=1.75}\), then \({\mu(U_{S}) > 0}\). In this paper, we prove that the conclusion holds for \({1 < \gamma \leqq \sqrt[4]{13}=1.898\dots\;}\).  相似文献   

8.
We present methods for computing the explicit decomposition of the minimal simple affine W-algebra \({W_k(\mathfrak{g}, \theta)}\) as a module for its maximal affine subalgebra \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) at a conformal level k, that is, whenever the Virasoro vectors of \({W_k(\mathfrak{g}, \theta)}\) and \({\mathscr{V}_k(\mathfrak{g}^\natural)}\) coincide. A particular emphasis is given on the application of affine fusion rules to the determination of branching rules. In almost all cases when \({\mathfrak{g}^{\natural}}\) is a semisimple Lie algebra, we show that, for a suitable conformal level k, \({W_k(\mathfrak{g}, \theta)}\) is isomorphic to an extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\) by its simple module. We are able to prove that in certain cases \({W_k(\mathfrak{g}, \theta)}\) is a simple current extension of \({\mathscr{V}_k(\mathfrak{g}^{\natural})}\). In order to analyze more complicated non simple current extensions at conformal levels, we present an explicit realization of the simple W-algebra \({W_{k}(\mathit{sl}(4), \theta)}\) at k = ?8/3. We prove, as conjectured in [3], that \({W_{k}(\mathit{sl}(4), \theta)}\) is isomorphic to the vertex algebra \({\mathscr{R}^{(3)}}\), and construct infinitely many singular vectors using screening operators. We also construct a new family of simple current modules for the vertex algebra \({V_k (\mathit{sl}(n))}\) at certain admissible levels and for \({V_k (\mathit{sl}(m \vert n)), m\ne n, m,n\geq 1}\) at arbitrary levels.  相似文献   

9.
An antimagic labeling of a graph with q edges is a bijection from the set of edges of the graph to the set of positive integers \({\{1, 2,\dots,q\}}\) such that all vertex weights are pairwise distinct, where a vertex weight is the sum of labels of all edges incident with the vertex. The join graph GH of the graphs G and H is the graph with \({V(G + H) = V(G) \cup V(H)}\) and \({E(G + H) = E(G) \cup E(H) \cup \{uv : u \in V(G) {\rm and} v \in V(H)\}}\). The complete bipartite graph K m,n is an example of join graphs and we give an antimagic labeling for \({K_{m,n}, n \geq 2m + 1}\). In this paper we also provide constructions of antimagic labelings of some complete multipartite graphs.  相似文献   

10.
We call the \({\delta}\)-vector of an integral convex polytope of dimension d flat if the \({\delta}\)-vector is of the form \({(1,0,\ldots,0,a,\ldots,a,0,\ldots,0)}\), where \({a \geq 1}\). In this paper, we give the complete characterization of possible flat \({\delta}\)-vectors. Moreover, for an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^N}\) of dimension d, we let \({i(\mathcal{P},n)=|n\mathcal{P}\cap \mathbb{Z}^N|}\) and \({i^*(\mathcal{P},n)=|n(\mathcal{P} {\setminus}\partial \mathcal{P})\cap \mathbb{Z}^N|}\). By this characterization, we show that for any \({d \geq 1}\) and for any \({k,\ell \geq 0}\) with \({k+\ell \leq d-1}\), there exist integral convex polytopes \({\mathcal{P}}\) and \({\mathcal{Q}}\) of dimension d such that (i) For \({t=1,\ldots,k}\), we have \({i(\mathcal{P},t)=i(\mathcal{Q},t),}\) (ii) For \({t=1,\ldots,\ell}\), we have \({i^*(\mathcal{P},t)=i^*(\mathcal{Q},t)}\), and (iii) \({i(\mathcal{P},k+1) \neq i(\mathcal{Q},k+1)}\) and \({i^*(\mathcal{P},\ell+1)\neq i^*(\mathcal{Q},\ell+1)}\).  相似文献   

11.
In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers \({B_n}\) are given by the recurrence \({B_n = 6 B_{n-1} - B_{n-2}}\) with initial conditions \({B_0 = 0, B_1 = 1}\) and its associated Lucas balancing numbers \({C_n}\) are given by the recurrence \({C_n = 6 C_{n-1} - C_{n-2}}\) with initial conditions \({C_0 = 1, C_1 = 3}\). First we find the perfect powers in the sequence of balancing and Lucas balancing numbers. We also identify those Lucas balancing numbers which are products of a power of 3 and a perfect power. Using this property of Lucas balancing numbers, we solve a conjecture regarding the non-existence of positive integral solution (x, y) for the Diophantine equation \({2x^2 + 1 = 3^b y^m}\) for any even positive integers b and m with \({m > 2}\), given in (Int J Number Theory 11:1259–1274, 2015). Also we prove that the Diophantine equations \({B_n B_{n+d}\ldots B_{n+(k-1)d} = y^m}\) and \({C_n C_{n+d}\ldots C_{n+(k-1)d} = y^m}\) have no solution for any positive integers n, d, k, y, and m with \({m \geq 2, y \geq 2}\) and gcd\({(n,d) = 1}\).  相似文献   

12.
In this paper we consider the Schrödinger operator ?Δ + V on \({\mathbb R^d}\), where the nonnegative potential V belongs to the reverse Hölder class \({B_{q_{_1}}}\) for some \({q_{_1}\geq \frac{d}{2}}\) with d ≥ 3. Let \({H^1_L(\mathbb R^d)}\) denote the Hardy space related to the Schrödinger operator L = ?Δ + V and \({BMO_L(\mathbb R^d)}\) be the dual space of \({H^1_L(\mathbb R^d)}\). We show that the Schrödinger type operator \({\nabla(-\Delta +V)^{-\beta}}\) is bounded from \({H^1_L(\mathbb R^d)}\) into \({L^p(\mathbb R^d)}\) for \({p=\frac{d}{d-(2\beta-1)}}\) with \({ \frac{1}{2}<\beta<\frac{3}{2} }\) and that it is also bounded from \({L^p(\mathbb R^d)}\) into \({BMO_L(\mathbb R^d)}\) for \({p=\frac{d}{2\beta-1}}\) with \({ \frac{1}{2}<\beta< 2}\).  相似文献   

13.
In this paper the authors study the boundedness for a large class of sublinear operators \({T_{\alpha}, \alpha \in [0,n)}\) generated by Calderón–Zygmund operators (α = 0) and generated by Riesz potential operator (α > 0) on generalized Morrey spaces \({M_{p,\varphi}}\) . As an application of the above result, the boundeness of the commutator of sublinear operators \({T_{b,\alpha}, \alpha \in [0,n)}\) on generalized Morrey spaces is also obtained. In the case \({b \in BMO}\) and T b,α is a sublinear operator, we find the sufficient conditions on the pair \({(\varphi_1,\varphi_2)}\) which ensures the boundedness of the operators \({T_{b,\alpha}, \alpha \in [0,n)}\) from one generalized Morrey space \({M_{p,\varphi_1}}\) to another \({M_{q,\varphi_2}}\) with 1/p ? 1/q = α/n. In all the cases the conditions for the boundedness are given in terms of Zygmund-type integral inequalities on \({(\varphi_1,\varphi_2)}\) , which do not assume any assumption on monotonicity of \({\varphi_1, \, \varphi_2}\) in r. Conditions of these theorems are satisfied by many important operators in analysis, in particular, Littlewood–Paley operator, Marcinkiewicz operator and Bochner–Riesz operator.  相似文献   

14.
A digraph \({\overrightarrow{\mathcal{Pc}}(G)}\) is said to be the directed power graph on the conjugacy classes of a group G, if its vertices are the non-trivial conjugacy classes of G, and there is an arc from vertex C to C′ if and only if \({C \neq C'}\) and \({C \subseteqq {C'}^{m}}\) for some positive integer \({m > 0}\). Moreover, the simple graph \({\mathcal{Pc}(G)}\) is said to be the (undirected) power graph on the conjugacy classes of a group G if its vertices are the conjugacy classes of G and two distinct vertices C and C′ are adjacent in \({\mathcal{Pc}(G)}\) if one is a subset of a power of the other. In this paper, we find some connections between algebraic properties of some groups and properties of the associated graph.  相似文献   

15.
A sufficient criterion for the map \({C_{A, B}(S) = ASB}\) to be supercyclic on certain algebras of operators on Banach spaces is given. If T is an operator satisfying the Supercyclicity Criterion on a Hilbert space H, then the linear map \({C_{T}(V) = TVT^*}\) is shown to be norm-supercyclic on the algebra \({\mathcal{K}(H)}\) of all compact operators, COT-supercyclic on the real subspace \({\mathcal{S}(H)}\) of all self-adjoint operators and weak*-supercyclic on \({\mathcal{L}(H)}\) of all bounded operators on H. Examples including operators of the form \({C_{B_w, F_\mu}}\) are provided, where Bw and \({F_\mu}\) are respectively backward and forward shifts on Banach sequence spaces.  相似文献   

16.
17.
A vertex-colored graph G is rainbow vertex connected if any two distinct vertices are connected by a path whose internal vertices have distinct colors. The rainbow vertex connection number of G, denoted by rvc(G), is the smallest number of colors that are needed in order to make G rainbow vertex connected. In this paper, we prove that for a connected graph G, if \({{\rm diam}(\overline{G}) \geq 3}\), then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. Next, we obtain that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 2}\), if G is connected, then \({{\rm rvc}(G) \leq 2}\), and this bound is tight. A total-colored path is total rainbow if its edges and internal vertices have distinct colors. A total-colored graph G is total rainbow connected if any two distinct vertices are connected by some total rainbow path. The total rainbow connection number of G, denoted by trc(G), is the smallest number of colors required to color the edges and vertices of G in order to make G total rainbow connected. In this paper, we prove that for a triangle-free graph \({\overline{G}}\) with \({{\rm diam}(\overline{G}) = 3}\), if G is connected, then trc\({(G) \leq 5}\), and this bound is tight. Next, a Nordhaus–Gaddum-type result for the total rainbow connection number is provided. We show that if G and \({\overline{G}}\) are both connected, then \({6 \leq {\rm trc} (G) + {\rm trc}(\overline{G}) \leq 4n - 6.}\) Examples are given to show that the lower bound is tight for \({n \geq 7}\) and n = 5. Tight lower bounds are also given for n = 4, 6.  相似文献   

18.
Consider a graph \(G=(V,E)\) and a vertex subset \(A \subseteq V\). A vertex v is positive-influence dominated by A if either v is in A or at least half the number of neighbors of v belong to A. For a target vertex subset \(S \subseteq V\), a vertex subset A is a positive-influence target-dominating set for target set S if every vertex in S is positive-influence dominated by A. Given a graph G and a target vertex subset S, the positive-influence target-dominating set (PITD) problem is to find the minimum positive-influence dominating set for target S. In this paper, we show two results: (1) The PITD problem has a polynomial-time \((1 + \log \lceil \frac{3}{2} \Delta \rceil )\)-approximation in general graphs where \(\Delta \) is the maximum vertex-degree of the input graph. (2) For target set S with \(|S|=\Omega (|V|)\), the PITD problem has a polynomial-time O(1)-approximation in power-law graphs.  相似文献   

19.
Let \({\mathbb{K}}\) be a field and \({S=\mathbb{K}[x_1,\dots,x_n]}\) be the polynomial ring in n variables over \({\mathbb{K}}\). Let G be a graph with n vertices. Assume that \({I=I(G)}\) is the edge ideal of G and \({J=J(G)}\) is its cover ideal. We prove that \({{\rm sdepth}(J)\geq n-\nu_{o}(G)}\) and \({{\rm sdepth}(S/J)\geq n-\nu_{o}(G)-1}\), where \({\nu_{o}(G)}\) is the ordered matching number of G. We also prove the inequalities \({{\rmsdepth}(J^k)\geq {\rm depth}(J^k)}\) and \({{\rm sdepth}(S/J^k)\geq {\rmdepth}(S/J^k)}\), for every integer \({k\gg 0}\), when G is a bipartite graph. Moreover, we provide an elementary proof for the known inequality reg\({(S/I)\leq \nu_{o}(G)}\).  相似文献   

20.
A group G is called capable if there is a group H such that \({G \cong H/Z(H)}\) is isomorphic to the group of inner automorphisms of H. We consider the situation that G is a finite capable p-group for some prime p. Suppose G has rank \({d(G) \ge 2}\) and Frattini class \({c \ge 1}\), which by definition is the length of a shortest central series of G with all factors being elementary abelian. There is up to isomorphism a unique largest p-group \({G_d^c}\) with rank d and Frattini class c, and G is an epimorphic image of \({G_d^c}\). We prove that this \({G_d^c}\) is capable; more precisely, we have \({G_d^c \cong G_d^{c+1}/Z(G_d^{c+1})}\).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号