首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The purpose of this study is to analyse the combined heat and mass transfer of liquid film condensation from a small steam–air mixtures flowing downward along a vertical tube. Both liquid and gas stream are approached by two coupled laminar boundary layer. An implicit finite difference method is employed to solve the coupled governing equations for liquid film and gas flow together with the interfacial matching conditions. The effects of a wide range of changes of three independent variables (inlet pressure, inlet Reynolds number and wall temperature) on the concentration at exit tube, local Nusselt and Sherwood numbers, film thickness, accumulated condensate rate and temperature are carefully examined. The numerical results indicate that in the case of condensing a small concentration of vapours from a mixture, the resistance to heat and mass transfer by non-condensable gas becomes very intense. The comparisons of average Nusselt number and local condensate heat transfer coefficient with the literature results are in good agreement.  相似文献   

2.
The flow of a liquid in thin layers is one of the hydrodynamic problems of chemistry and heat engineering. The large surface area of films and their small thickness make it possible to accelerate thermal, diffusive, and chemical processes at the gas-liquid boundary.Theoretical studies of liquid flow in a vertical descending thin layer are presented in [1–4]. In this paper we study ascending wave flows of a liquid in a thin vertical layer in contact with a gas, i.e., flows in the direction opposite the action of the force due to gravity, with account for the action of the gas on the liquid surface. Such motions are encountered when oil is extracted from strata that are saturated with gas. At some distance from the stratum the oil and gas separate: the gas travels at high velocity inside the pipe, occupying a considerable portion of the pipe, and the liquid is displaced toward the pipe walls, forming a thin film. In certain cases a wave-like interface develops between the oil and gas that travels with a velocity greater than that of the liquid but less than the average gas velocity. Similar phenomena are observed in high velocity mass exchangers.We examine the effect of the gas for both laminar and turbulent flow.Studies that neglect the effect of the gas flow on the liquid show that for waves on the film surface whose lengths are considerably longer than the average thickness of the layer, the liquid motion in the film is described by boundary layer equations in which account is taken of the mass force, i.e., the force due to gravity. With some approximation, we can assume that in accounting for the effect of the gas on the liquid the liquid flow is described by these same equations.  相似文献   

3.
A finite-volume-based numerical model for mixed-convection laminar film condensation from a flowing mixture of a vapor and a heavier noncondensable gas on inclined isothermal flat plates is presented. The full boundary layer equations for the liquid film and the vapor-gas mixtures (including liquid inertia and energy convection terms) are solved implicitly with appropriate liquid-mixture interface conditions. Results were obtained for three mixtures, covering wide ranges of liquid Prandtl number and free-stream gas concentration in the forced-convection, mixed-convection and free-convection flow regimes. The effects of liquid inertia were found to be significant only for low-Prandtl-number fluids and lower gas concentrations. The effects of liquid energy convection were found to be significant only for high-Prandtl-number fluids and to be most significant for mixed-convection condensation. Received on 3 March 1998  相似文献   

4.
A steady-state supersonic flow of a viscous heat-conducting gas with an admixture of small droplets over a flat plate is considered. The plate surface is assumed to be thermally insulated, and its equilibrium temperature is greater than the evaporation point of the droplets. In contrast to previous publications, the case of low-inertia droplets, which do not deposit onto the wall and have time to evaporate in the boundary layer, is considered. Within the two-fluid approximation for the laminar gasdroplet boundary layer with a compressible carrier phase, a parametric numerical study of the effect of evaporating droplets on the boundary layer structure and the temperature of the adiabatic wall is performed. The similarity parameters are found and the range of these parameters is determined, in which the adiabatic-wall temperature is reduced substantially due to the droplet evaporation even for very low initial concentrations of the liquid phase. This makes promising the use of the condensed phase in the schemes of gasdynamic energy separation based on heat transfer between the flows in subsonic and supersonic boundary layers.  相似文献   

5.
A boundary layer model is developed to analyze diffusion through a laminar falling film for incomplete penetration of the dissolved gas. Regarding the rather intractable nature of the problem, Kantorovich Integral Method is chosen. Accordingly, a mass transfer boundary layer is assumed to keep growing perpendicularly to the falling film until it hits the wall. Such an approach is superior to its preceding artworks based on Higbie’s penetration theory in terms of implementation of more realistic conditions/modeling assumptions. Furthermore, unlike penetration model, this approach gives a criterion whether the diffusion is complete. Comparing the two models, boundary layer model estimates up to 2.3 % larger mass transfer coefficients. Moreover, a sensitivity analysis of liquid velocity distribution upon Sherwood number is conducted. It is found that the local velocity at gas–liquid interface is of highest dominance. Experimental data of SO2 absorption in water reported in literature is exploited to validate the model. It is shown that boundary layer model better fits the experimental data.  相似文献   

6.
Experimental studies of interface behavior when a gas flow, confined in a vertical tube, flows past a stationary body of liquid are presented. Critical conditions necessary for the interface to become unstable or break up are investigated. Specific phenomena studied include: penetration of liquid from a reservoir into the top open end of a vertical tube from which gas is emerging, flow of gas past a liquid ring maintained on the inside wall of the tube, conditions for the support of a “hanging film” on the tube wall, formation of droplets and establishment of a continuous upwards-flowing liquid film. A general mathematical formulation of this problem is presented and used to derive the set of relevant dimensionless parameters. Solutions are obtained to certain simple cases and are shown to be consistent with experiment in the limits in which one or more of the variables exerts negligible influence.  相似文献   

7.
Experimental and numerical work was performed for the laminar film condensation of steam–air mixture flow over a flat plate. For small temperature difference between the gas mixture and the cold wall, the gas mixture in the boundary layer can be treated as superheated gas. When the temperature difference is large, the gas mixture becomes supersaturated near the interface. In that case, mist formed near the interface, the temperature profile of the gas mixture was greatly concaved toward the interface and the heat transfer was enhanced. However the velocity profile measured by the laser Doppler anemometer (LDA) showed the same trend without mist formation. A calculation model is proposed and compared with the experimental data and previous models for the superheated or the saturated conditions.  相似文献   

8.
A study is made of the nonstationary laminar boundary layer on a sharp wedge over which a compressible perfect gas flows; the wedge executes slow harmonic oscillations about its front point. It is assumed that the perturbations due to the oscillations are small, and the problem is solved in the linear approximation. It is also assumed that the thickness of the boundary layer is small compared with the thickness of the complete perturbed region. Then in a first approximation the influence of the boundary layer on the exterior inviscid flow can be ignored, and the parameters on the outer boundary of the boundary layer can be taken equal to their values on the body for the case of inviscid flow over the wedge. They are determined from the solution to the inviscid problem that is exact in the framework of the linear formulation. The wall is assumed to be isothermal. The dependence of the viscosity on the temperature is linear. Under these assumptions, the problem of calculating the nonstationary perturbations in the boundary layer on the wedge is a self-similar problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 146–151, July–August, 1980.  相似文献   

9.
The problem of the wave motion of a liquid layer was first investigated by Kapitsa [1, 2], who gave an approximate analysis of the free flow and flow in contact with gas stream, and evaluated the influence of the heat transfer processes on the flow. The problem of the stability of such a flow was studied in detail by Benjamin [3] and Yih [4, 5], These authors proposed seeking the solution of the resulting Orr-Sommerfeld equation in the form of a series in a small parameter and developed a corresponding method of successive approximations. As the small parameter [3–5], they made use of the product of the disturbance wave number and the Reynolds number. In these studies, the tangential stress on the free surface was taken equal to zero, and the fluid film was always considered essentially plane. At the same time, there are certain types of problems of considerable interest in which neither of these assumptions is satisfied. A good example might be the problem on the stability of the annular regime of two-phase flow in pipes and capillaries, when the basic stream of one fluid is separated from the pipe walls by an annular layer of another fluid. In this case, the interface has a finite radius of curvature and the tangential stress on the interface may be significantly different from zero.In the present paper, the problem of the flow stability of a fluid layer with respect to small disturbances of the boundary surface is considered with account for both the finite radius of curvature of the boundary surface and the nonzero hydrodynamic friction at the boundary. The film is assumed to be quite thin. This enables us, firstly, to consider the Reynolds number small, to use the general method of [5], and, second ly, to consider the film thickness sufficiently small in comparison with the radius of curvature of the substrate on which the film lies. Furthermore, for evaluating the stability of the laminar flow of the curved film we can use the results obtained for a plane film with account for the terms which depend on the curvature of the substrate.As a rule, previous studies have considered only one-dimensional disturbances of the boundary surface. In the present paper, in the first approximation, the stability is examined in relation to two-dimensional disturbances of this surface, corresponding to three-dimensional flow disturbances.As an example, the results obtained are applied to the investigation of the stability of the free flow of a layer of fluid over an inclined plane under the sole influence of gravity.  相似文献   

10.
Consider the dynamics of a thin laminar liquid film flowing over an inclined wall in the presence of a co-flowing turbulent gas. The solution to the full two-phase flow problem poses substantial technical difficulties. However, by making appropriate assumptions, the solution process can be simplified and can provide valuable insights. The assumptions allow us to solve the gas and liquid problems independently. Solving for the gas flow reduces to finding perturbations to pressure and tangential stresses at the interface, influencing the liquid problem through the boundary conditions. We analyze the effect of gas flow on the liquid problem by developing an integral-boundary-layer model, which is valid up to moderate liquid Reynolds numbers. We seek solitary-wave solutions of this model under the influence of gas flow via a pseudo-arclength continuation method. Our computations demonstrate that as a general trend, the wave speed increases with increasing the gas shear and the liquid flow rate. Further insight into the problem is provided via time-dependent computations of the integral-boundary-layer model.  相似文献   

11.
A numerical study of the evaporation in mixed convection of a pure alcohol liquid film: ethanol and methanol was investigated. It is a turbulent liquid film falling on the internal face of a vertical tube. A laminar flow of dry air enters the vertical tube at constant temperature in the downward direction. The wall of the tube is subjected to a constant and uniform heat flux. The model solves the coupled parabolic governing equations in both phases including turbulent liquid film together with the boundary and interfacial conditions. The systems of equations obtained by using an implicit finite difference method are solved by TDMA method. A Van Driest model is adopted to simulate the turbulent liquid film flow. The influence of the inlet liquid flow, Reynolds number in the gas flow and the wall heat flux on the intensity of heat and mass transfers are examined. A comparison between the results obtained for studied alcohols and water in the same conditions is made.  相似文献   

12.
Theoretical study of a three-dimensional laminar boundary layer is a complex problem, but it can be substantially simplified in certain particular cases and even reduced to the solution of ordinary differential equations.One such particular case is the flow of a compressible gas on a streamline in conical external flow. The case is of considerable practical importance because the local heat fluxes may take extremal values on such lines.Such flow, except for the conical case, has been examined [1–4], and an approximate method has been given [1] on the basis of integral relationships and a special form for the approximating functions. A numerical solution has been given [2, 3] for such flow around an infinite cylinder. It was assumed in [1–3] that the Prandtl number and the specific heats were constant, and that the dynamic viscosity was proportional to temperature. Heat transfer has been examined [4] near a cylinder exposed to a flow of dissociated air.Here we give results from numerical solution of a system of ordinary differential equations for the flow of a compressible gas in a laminar boundary layer on streamlines in conical external flow, with or without influx or withdrawal of a homogeneous gas. It is assumed that the gas is perfect and that the dynamic viscosity has a power-law temperature dependence.  相似文献   

13.
In wetted and nonwetted tubes the hydrodynamics and heat transfer of liquid metal flow were investigated. Mercury was used as test fluid. For the laminar flow no hydraulics anomalies were indicated. In the case of the wetted tube a steady change of diameter and an increase of the surface roughness were observed. This is due to the formation and removing of a viscous amalgam layer at the tube wall. In the laminar region heat transfer measurements show very good agreement with theory. In the turbulent region the experimental results are comparable with heat transfer coefficients valid for the nonwetted tube published in literature. The influence of different surface contact conditions to heat transfer can be excluded. A thermal contact resistance could not be found.  相似文献   

14.
Using a more simple formulation than that of [1], the problem of core flow of a fiber suspension in a straight tube of circular cross section is considered. The solution is sought by the small parameter method. The first approximation thus found is compared in detail with experiment. Formulas are obtained for the tube resistance coefficient and the dimensionless thickness of the near-wall layer. The laminar flow in the first approximation is characterized by three dimensionless complexes. Both the resistance coefficient and the dimensionless thickness of the near-wall layer depend on only two of the complexes, and so partial simulation of the flow is possible.  相似文献   

15.
A study was undertaken to investigate transition in a pipe flow accelerated from rest. Experiments were carried out on a vertical tube under a constant head of liquid: flow was initiated by opening a solenoid valve. A wall shear stress probe used in the role of an event recorder identified two transition events, separated by the passage of a turbulent to laminar front and a period of laminar flow. Evidence suggests that the first comprises a laminar to turbulent interface arising from a natural stable/unstable front moving up the tube as local conditions become met, while the second is consequent upon the formation of a continuous turbulent structure carried down the tube from the inlet by the bulk flow. The paper provides a formal explanation of a phenomenon which is typical of that which is observed in starting pipe flows with a disturbed inlet.  相似文献   

16.
The erosion of dust by a shock wave in air and by the subsequent air flow was investigated theoretically and experimentally. The paths of single particles were calculated for the initial state of erosion when the flow in the shock tube boundary layer was still laminar. High-speed cinematographic experiments performed with a shock tube yielded mapping of the development of the dust cloud. From the agreement between the measured height of the cloud and the calculated height of flight of the particles one can conclude that the assumed model for the motion of the particles adequately describes the removal of particles from the wall.  相似文献   

17.
18.
Integral forms of the boundary layer equations, coupled with an assumed n-th degree boundary layer velocity profile, are used to study the effect of injection on the laminar flow in the inlet region of a circular tube. Results are illustrated graphically for a fourth degree velocity profile. It is found that the length of the inlet region decreases with the injection parameter and also that, at a given distance from the entry, the pressure drop in the inlet region increases with the injection parameter.  相似文献   

19.
A study is made of the flow of a compressible gas in a laminar boundary layer on swept-back wings of infinite span in a supersonic gas flow at different angles of attack. The surface is assumed to be either impermeable or that gas is blown or sucked through it. For this flow and an axisymmetric flow an analytic solution to the problem is obtained in the first approximation of an integral method of successive approximation. For large values of the blowing or suction parameters, asymptotic solutions are found for the boundary layer equations. Some results of numerical solution of the problem obtained by the finite-difference method are given for wings of various shapes in a wide range of angles characterizing the amount by which the wings are swept back and also the blowing or suction parameters. A numerical solution is obtained for the equations of the three-dimensional mixing layer formed in the case of strong blowing of gas from the surface of the body. The analytic and numerical solutions are compared and the regions of applicability of the analytic expressions are estimated. On the basis of the solutions obtained in the present paper and studies of other authors a formula is proposed for the calculation of the heat fluxes to a perfectly catalytic surface of swept-back wings in a supersonic flow of dissociated and ionized air at different angles of attack. Flow over swept-back wings at zero angle of attack has been considered earlier (see, for example, [1–4]) in the theory of a laminar boundary layer. In [5], a study was made of flow over swept-back wings at nonzero angle of attack at small and moderate Reynolds numbers in the framework of the theory of a hypersonic viscous shock layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 27–39, May–June, 1980.We thank G. A. Tirskii for a helpful discussion of the results.  相似文献   

20.
The transition from smooth to wavy stratified flow is studied for various pipe inclination angles with the aim to contribute to the realistic modeling and simulation of long distance two-phase pipe flow. The influence of the liquid flow field on interfacial structure is studied through local axial velocity measurements in the liquid phase in conjunction with other liquid layer characterization experiments. Observations based on fast-video recordings, are used to identify the main patterns of wave evolution. Liquid layer thickness time records are acquired using a parallel wire conductance technique from which mean layer thickness, RMS and power spectra of the fluctuations, as well as wave celerities are calculated. Laser Doppler Anemometry (LDA) is employed to investigate the flow structure in the thin liquid layer both with and without interfacial shear induced by a co-current gas flow. The results reveal the influence of the liquid flow field development on the interfacial structure. In particular, the new data of axial velocity profiles and liquid layer characteristics suggest that the onset of the interfacial waves is strongly affected by the liquid flow structure, possibly by the laminar to turbulent transition within the layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号