首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The hydromagnetic instability of a self-gravitating, incompressible, finitely conducting, viscous plasma of varying density has been investigated. The ambient magnetic field is assumed to be uniform and vertical. It is first shown that a variational principle characterizes the problem. The proper solutions have then been obtained, by the variational methods, for a semi-infinite plasma contained between two horizontal free boundaries. The dispersion relation has been solved numerically It is found that the growth rate of the unstable mode increases with the magnetic resistivity and with the Hall-currents while it decreases with the increasing viscosity. The influence of the effects of magnetic resistivity as well as of Hall-currents is, consequently, destabilizing on the dynamic instability of a self-gravitating stratified plasma. Viscosity has, however, a stabilizing influence on the growth rate of the disturbance.  相似文献   

2.
The electrogravitational instability of on oscillating streaming fluid cylinder under the action of the selfgravitating, capillary and electrodynamic forces has been discussed. The model is governed by the Mathieu second order integro-differential equation. Some limiting cases are recovering from the present general one. The capillary force is destabilizing in a small axisymmetric domain 0<x<1 and stabilizing otherwise. In the absence of electric fields, we found that the model is unstable in a small domain while it is selfgravitating stable in all other domains. The presence of the electric field led to the presence of a great number of stable waves. The electric field has a strong stabilizing influence on the selfgravitating instability of the model. The capillary force has a strong destabilizing influence on the selfgravitating instability of the model.Generally, the uniform stream supports the unstable waves, while the oscillating streaming has stability tendency.  相似文献   

3.
The effect of axial and radial magnetic fields on the Kelvin-Helmholtz stability of a cylindrical interface between the vapor and liquid phases of a fluid is studied when the vapor is hotter than the liquid and the two phases are enclosed between two cylindrical surfaces coaxial with the interface, and when there is mass and heat transfer across the interface. Both axisymmetric and asymmetric disturbances are considered. The linear dispersion relations are obtained and discussed. It is found that a uniform axial magnetic field has a stabilizing effect on the interface, while the effect of a radial magnetic field depends strongly on the choice of some physical parameters of the system. It is also found that the instability criterion is independent of heat and mass transfer coefficient, but it is different fromthat in the same problem without heat and mass transfer. Finally, the heat and mass transfer has a destabilizing influence on the system.  相似文献   

4.
金属纳米颗粒阵列中形成的四偶极晶格共振模式具有低辐射损耗、高品质因子的特性,因此广泛应用于纳米激光、传感、固态照明等领域.基于时域有限差分法在均匀环境下研究了银纳米圆柱阵列的光谱与近场特性.研究结果表明,在x偏振光直入射下,通过调节阵列x方向的周期,共振强度先增加后降低,当两个方向上的周期相等时,提出的阵列结构能够产生一个线宽约0.4 nm、品质因子高达1815的四偶极晶格共振模式,这种共振模式呈现出Fano线型的透射谷;调控y方向的周期能够实现从Fano线型的透射峰到透射谷的转变.本文说明了粒子大小、晶格周期对四偶极晶格共振模式的重要性,同时为银纳米颗粒在可见光波段设计高品质因子共振提供了优化策略.  相似文献   

5.
The Jeans instability of self-gravitating dusty plasma with polarization force is investigated considering the effects of magnetic field, dust temperature and radiative condensation. The condition of Jeans instability and expression of critical Jeans wave number are obtained which depend upon polarization force and dust temperature but these are unaffected by the presence of magnetic field. The radiative heat-loss functions also modify the Jeans condition of instability and expression of critical Jeans wave number. It is observed that the polarization force and ratio of radiative heat-loss functions have destabilizing while magnetic field and dust temperature have stabilizing influence on the growth rate of Jeans instability.  相似文献   

6.
The drift–diffusion model of a Penning discharge in molecular hydrogen under pressures of about 1 Torr with regard to the external electric circuit has been proposed. A two-dimensional axially symmetric discharge geometry with a cylindrical anode and flat cathodes perpendicular to the symmetry axis has been investigated. An external magnetic field of about 0.1 T is applied in the axial direction. Using the developed drift–diffusion model, the electrodynamic structure of a Penning discharge in the pressure range of 0.5–5 Torr at a current source voltage of 200–500 V is numerically simulated. The evolution of the discharge electrodynamic structure upon pressure variations in zero magnetic field (the classical glow discharge mode) and in the axial magnetic field (Penning discharge) has been studied using numerical experiments. The theoretical predictions of the existence of an averaged electron and ion motion in a Penning discharge both in the axial and radial directions and in the azimuthal direction have been confirmed by the calculations.  相似文献   

7.
The dynamics of a self-gravitating unmagnetized, inhomogeneous, streaming dusty plasma is studied in the present work. The presence of the shear flow causes the coupling between gravitational and electrostatic forces. In the absence of self-gravity, the fluctuations in the plasma may grow at the expense of the density inhomogeneity and for certain wavelengths, such an unstable mode may dominate the usual streaming instability. However, in the presence of self-gravity, the plasma inhomogeneity causes an overlap between Jeans and streaming modes and collapse of the grain will continue at all wavelengths.  相似文献   

8.
The instability in a stratified layer of a self-gravitating partially ionized plasma has been studied in the presence of effects of Hall currents. For a plasma permeated by a uniform vertical magnetic field, the dispersion relation has been obtained through variational method. It is found that the Hall currents have a destabilizing effect while the neutral gas frictional effects have a stabilizing influence.  相似文献   

9.
The plasmon microwave response of symmetric and asymmetric stripes of two-dimensional electrons with different boundary conditions has been studied. The symmetric case corresponds to stripes either without ohmic contacts or with ohmic contacts on both sides, while the contact in asymmetric stripes is present only on one side. It has been shown that there is a frequency shift of the observed plasma modes in asymmetric stripes. The lowest-frequency mode becomes a previously unobserved mode for which the quarter wavelength of the plasmon coincides with the length of the stripe. The behavior of the lowest mode and its multiple frequencies in asymmetric stripes has been studied under variation of the magnetic field, electron density, and temperature and size of the stripes. The results indicate that all plasma modes in symmetric and asymmetric stripes have the same physical nature.  相似文献   

10.
We have investigated the phenomenon of field-induced smectic layer instability, as monitored by synchrotron x-ray scattering. This instability means that, upon application of time-asymmetric electric fields to chiral smectics, the layer direction seems to "rotate" locally around an axis given by the direction of the applied field. For moderate values of field amplitude and asymmetry, domains with a favored layer inclination grow at the expense of unfavored ones, while larger fields and asymmetries generally lead to a chaotic flow behavior. At moderate amplitudes, we have followed the process of the horizontal layer folding (or horizontal chevron domain formation) and the smectic C* layer reorientation of ferroelectric liquid crystals by applying symmetric and asymmetric wave forms, respectively, and performing time resolved x-ray measurements. The studies unambiguously show the formation of a horizontal (in-plane, i.e., in a plane parallel to the cell substrates) chevron domain structure from a nonoriented sample by application of a symmetric electric field of sufficient amplitude. It is then demonstrated that a transition from the horizontal chevron domain structure to an in-plane uniform smectic layer direction takes place on application of asymmetric electric wave forms. Reversal of the field asymmetry reverses the inclination direction and selects the other layer normal direction as the uniform end state. The in-plane smectic layer reorientation process is followed here as it evolves, and analyzed directly by means of x-ray scattering.  相似文献   

11.
A linear electrohydrodynamic instability analysis is presented for an inviscid dielectric liquid sheet emanated into an inviscid dielectric gas medium in the presence of a horizontal electric field. The influence of Weber number, gas-to-liquid density ratio, and the applied electric field on the evolution of two-, and three-dimensional disturbances of symmetrical and antisymmetrical types is studied. It is found, for antisymmetrical waves, that two-dimensional disturbances always prevail over three-dimensional disturbances, regardless of Weber number or gas-to-liquid density ratio values, especially for long waves; while for short waves, both two- and three-dimensional disturbances grow at approximately the same rate. It is also found, for symmetrical waves, that two-dimensional disturbances always dominate the instability process at low Weber number, and when the Weber number is large, symmetrical three-dimensional disturbances become more unstable than two-dimensional ones for long waves. The effect of increasing the gas-to-liquid density ratio is to promote the dominance of long three-dimensional symmetrical waves over their two-dimensional counterpart. Finally, the equilibrium Weber number at which the growth rates of two- and three-dimensional modes are equal is discussed for both symmetrical- and antisymmetrical-disturbances cases.-1  相似文献   

12.
The electric field of the modes of semiconductor microring lasers (SMRLs) in the presence of bus waveguide reflections are linear combinations of the clock wise (CW) and the counter clock wise (CCW) electric fields. The mode structures can be controlled by the waveguide reflection coefficients. The power ratio and phase difference of the CW and CCW fields of one mode is proportional to the ratio of the reflection coefficients of the left and right waveguides. It is shown that the degenerate CW and CCW modes in the presence of bus waveguide reflections are split into two modes with different frequencies. Employing these new modes, SMRL can be used as an element to design flip-flops used in photonic integrated circuits. For a symmetric structure, the inter-frequencies of CW and CCW waves relating to each mode can be considered as the output of the optical flip-flop. Output of asymmetric mode is zero while the symmetric mode has a nonzero output.  相似文献   

13.
The electrohydrodynamic Kelvin-Helmholtz instability of the plane interface between two uniform, superposed viscous and streaming dielectric fluids permeated with suspended particles through porous medium is considered under the influence of a tangential electric field. In the absence of surface tension, it is found that perturbations transverse to the direction of streaming are unaffected by the presence of both streaming and the tangential electric field, if perturbations in the direction of streaming are ignored. For perturbations in all other directions there exists instability for a certain wavenumber range. In the presence of surface tension, it is found that the instability of this system is suppressed by the presence of the tangential electric field. Both the tangential electric field and the surface tension have stabilizing effects and they are able to suppress Kelvin-Helmholtz instability for small wavelength perturbations. The medium porosity reduces the stability range given in terms of a difference in streaming velocities and the electric field effect, while the suspended particles do not affect the above results.  相似文献   

14.
欠膨胀冲击射流具有复杂的激波结构,并伴随产生高幅值的离散频率单音.通过高速摄像获取的纹影图像并结合噪声测量,对欠膨胀冲击射流激波振荡过程、剪切层不稳定波的模态和离散频率单音的产生进行了系列研究.给出了冲击距离为5倍喷嘴出口直径的复杂流动实验结果分析,射流剪切层不稳定波有对称和非对称两种模态,发现不同模态下的离散频率单音...  相似文献   

15.
The instability of a stratified rotating fluid layer through porous medium in the presence of an inhomogeneous magnetic field is investigated. For exponentially varying density and magnetic field variations, an eigenvalue solution has been obtained. The dispersion relation is obtained and discussed for both the stable and unstable stratifications separately. It is found, for non-porous medium, that for the stable mode of disturbance, the system is always stable, and for the unstable mode of disturbance, it is stabilized only under a certain condition for the Alfvèn velocity, rotation and the stratification parameter. In the latter case, both rotation and magnetic field are found to have a stabilizing effect on the growth rate. In the presence of porous medium, it is found, for real growth rate n, that the inhomogeneous magnetic field has always a stabilizing effect on the considered system. It is found also, for complex growth rate n, that the system is stable for the stable stratification case, while it is stable or unstable for the unstable case under a certain wavenumbers range depending on the Alfvèn velocity and the stratification parameter. The presence of the magnetic field is found to stabilize a certain wavenumbers band, whereas the system was unstable for all wavenumbers in the absence of the magnetic field. Also, the presence of porous medium is found to hide the stabilizing effect played by rotation on the considered system for non-porous medium, i.e., rotation does not have any significant effect on the stability criterion in this case.  相似文献   

16.
We study the stability of an interface between two inviscid magnetic fluids of different densities flowing parallel to each other in an oscillatory manner. The system is pervaded by a uniform oblique magnetic field distribution. The analysis allows for mass and heat transfer across the interface. A general eigenvalue relation is derived and discussed analytically. The classical stability criterion is found to be substantially modified due to the effect of the oblique magnetic field with mass and heat transfer. Some previous studies are reported for appropriate data choices. The longitudinal magnetic field has a strong stabilizing influence on all wavelengths, which can be used to suppress the destabilizing influence of the mass and heat transfer. We conclude with a discussion of the stability of unsteady shear layers on the basis of the results. The parametric excitation of the surface waves is analyzed by means of the multiple-time-scales method. The transition curves are obtained analytically.  相似文献   

17.
刘炳灿  于丽  逯志欣  张恺 《中国物理 B》2010,19(9):97303-097303
In the asymmetric and symmetric nonlinear-metal-nonlinear dielectric structures, this paper studies the analytic dispersion relation for surface plasmon in a system consisting of a thin metallic film covered on two sides media of intensity-dependent refractive indexes by applying a generalised first integral approach. Especially in the symmetric waveguide structure, two possible modes can exist: the odd mode and the even mode. The dispersion relations of the two modes are obtained. Due to the nonlinear dielectric, the squared magnitude of the electric field at the interface appears and alters the dispersion relations. Numerical results are compared to those from a certain approximate treatment.  相似文献   

18.
刘炳灿  于丽  逯志欣 《中国物理 B》2011,20(3):37302-037302
The analytic surface plasmon polaritons(SPPs) dispersion relation is studied in a system consisting of a thin metallic film bounded by two sides media of nonlinear dielectric of arbitrary nonlinearity is studied by applying a generalised first integral approach.We consider both asymmetric and symmetric structures.Especially,in the symmetric system,two possible modes can exist:the odd mode and the even mode.The dispersion relations of the two modes are obtained.Due to the nonlinear dielectric,the magnitude of the electric field at the interface appears and alters the dispersion relations.The changes in SPPs dispersion relations depending on film thicknesses and nonlinearity are studied.  相似文献   

19.
We investigate the optical modes in a coupled pair of semiconductor microdisks in symmetric and asymmetric configurations both experimentally and theoretically. While the quality factors of coupled first- and second-order whispering gallery modes (WGMs) show a conventional crossing, the quality factors of the same-order WGMs reveal an interesting splitting behavior, leading to the formation of high- and low-quality supermodes. Our results are reproduced by numerical simulations, and an explanation based on optical interference is suggested. Quality-factor splitting is a subtle phenomenon that might help to design microarchitectures for efficient optical coupling in cavity quantum electrodynamic experiments.  相似文献   

20.
《Physics letters. A》2019,383(24):2908-2913
The electrostatic twisted modes with orbital angular momentum and associated kinetic instability are studied in a permeating space plasma containing streaming particle species. The plasma containing superthermal electrons and ions is modeled by using a non-gyrotropic Kappa distribution function which penetrates through a relatively slow moving (static) plasma and gives rise to dispersion, damping and growth of ion-acoustic mode under various conditions. Using the Vlasov-Poisson model, the solutions of twisted modes are defined by Laguerre-Gaussian mode functions, which decompose the plasma distribution function and electric field into components characterized by the axial and azimuthal wave numbers. The dielectric constant is derived and analyzed for threshold condition of wave dispersion and instability in the presence of helical electric field with illustrations. The wave excitations due to penetration of solar wind into cometary clouds or interstellar electron-ion plasmas is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号