首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Electrochemical oxidation of phenolic compounds generally produces unstable phenoxy radicals that readily polymerize to passivate the surface of solid electrodes. In this study, the electrocatalytic oxidation of phenol in the presence and absence of methanol was investigated by cyclic voltammetry on a platinum electrode. The cyclic voltammogram of phenol in a mixture of phosphate buffer/methanol solution showed well-defined peaks at ∼600 mV vs. Ag/AgCl reference electrode, which surprising, gradually increased with repetitive scanning, stabilizing after 50 cycles. This unexpected behavior is in contrast to previous studies involving phenolic compounds, which always show a decrease in intensity during continuous potential scanning. Scanning electrochemical spectroscopy (SEM) was further used to investigate the changes in the surface morphology of the Pt electrode after electrodeposition. A new electrocatalytic mechanism for phenol oxidation on the surface of a Pt electrode is suggested in the presence of methanol. The proposed mechanism is based on the formation of a film of Pt oxide/hydroxides onto which the phenol and the products of its electrochemical oxidation are further deposited. The mechanism was also studied using more complex phenolic compounds including resveratrol, quercetin and bisphenol A. The results emphasized the effect of aryl substituents on the electrochemistry of this particular class of compounds.  相似文献   

2.
The influence of various phenolic compounds on the lactoperoxidase (LPO)/hydrogen peroxide (H2O2)-catalyzed oxidation of biochemical reductants such as reduced beta-nicotinamide adenine dinucleotide (NADH), reduced beta-nicotinamide adenine dinucleotide phosphate (NADPH) or reduced glutathione (GSH) was investigated by electron spin resonance (ESR) spectroscopy. Micromolar quantities of phenolic compounds such as 17beta-estradiol, phenol, and p-chlorophenol enhanced the LPO/H2O2-catalyzed oxidation of NAD(P)H or GSH to generate a large amount of superoxide radical (O2*-) or glutathione thiyl radical (GS*), while, phenolic compounds such as quercetin and Trolox C greatly suppressed the generation of O2*- and GS*. In order to elucidate the effects of phenolic compounds on the generation of O2*- and GS*, their quenching activities for a stable radical, 1,1-diphenyl-2-picrylhydrazyl (DPPH), were investigated by ESR spectroscopy. 17beta-Estradiol, phenol, and p-chlorophenol showed very weak scavenging activities for DPPH, but quercetin and Trolox C showed strong activities. This suggests that the ability of phenolic compounds to enhance LPO/H2O2-catalyzed oxidation of NAD(P)H or GSH relates inversely to their ability to quench DPPH. That is, phenolic compounds having weak quenching activity against DPPH may enhance the LPO/H2O2-catalyzed oxidation of NAD(P)H or GSH to generate a large amount of O2*- or GS*.  相似文献   

3.
A carbon ionic liquid electrode (CILE) was used for the investigation of the electrochemical oxidation of phenolic compounds in acidic media using cyclic voltammetry, chronoamperometry and square wave voltammetry techniques. The results indicate that, contrary to many other electrodes, the oxidation of phenolic compounds on CILE is highly stable and does not result in electrode fouling. Cyclic voltammetry showed that phenolic compounds such as phenol, 2,4-dichlorophenol and catechol were oxidized at CILE and remained electroactive after multiple cycles and at high concentrations of phenol. The cyclic voltammetric response of the CILE is very stable with more than 99% of the initial activity remaining after 20 s of stirring of a 0.5 mM solution of phenol.  相似文献   

4.
Chlorogenic acid and its two structural components, quinic acid and caffeic acid, were pyrolyzed under reaction conditions simulating the typical pyrolysis conditions inside a burning cigarette. Major phenolic products from pyrolysis of the three acids were quantified and compared to evaluate the respective contribution of the quinic and caffeic acid moieties to the overall phenolic yield in chlorogenic acid pyrolysis. The results show that the most prominent phenolic product of chlorogenic acid is catechol, followed in order by phenol, hydroquinone, and alkylcatechols. Among these phenolics, catechol and alkylcatechols are formed mainly from the caffeic acid moiety of chlorogenic acid, while phenol and hydroquinone are produced predominantly from the quinic acid moiety. The quinic acid moiety can thus contribute more than 40 % of the overall phenolic yields in chlorogenic acid pyrolysis (0.54 mol mol?1 chlorogenic acid pyrolyzed at 600 °C). Because considerable amounts of free quinic acid and its derivatives exist in tobacco, the results of this study indicate that quinic acid can be an important source of phenolic compounds, especially hydroquinone and phenol, in tobacco smoke.  相似文献   

5.
Dihydroxyphenylalanine (DOPA), its methyl ester (DOPAM) and the N-acetylated derivative of the ester (DOPAMNA) are found to undergo rapid oxidation in air-saturated alkaline solution. Some of the products of oxidation exhibit fluorescent emission in the 300-500 nm spectral range and their excitation-emission spectra have been determined in acidic and alkaline aqueous solutions. The spectral distributions and positions of the maxima depend on the pH of the solution. Excitation-emission maxima associated with the protonated phenolic form of the compounds occur at shorter wavelengths than those of the conjugate base. At some pH values the phenolic forms of these molecules are excited and undergo rapid deprotonation in the excited state; as a consequence, emission is observed from the phenolate anion. The fluorescence excitation-emission spectrum of an authentic sample of 3,4-dihydroxycinnamic (caffeic) acid has also been determined and features of the fluorescence spectra of the principal oxidation products are consistent with the presence of 3,4-hydroxycinnamoyl compounds in solutions of oxidized DOPAM and DOPAMNA.  相似文献   

6.
以含量30 g/L的苯酚水溶液为模型,提出氯化联合氧化工艺,实现对高浓度含酚废水中苯酚的转化回收及残余酚类的氧化脱除。 首先以pH值作为指示,向溶液中引入足够量的氯离子和氢离子,通过加入氯酸钠与之反应定量产生氯气;在所控制的实验条件下,氯气与溶液中的苯酚选择性反应转化为低溶解度的三氯苯酚沉淀,经气相色谱-质谱(GC-MS)面积归一法测得其含量可达97.76%;过滤所得滤液化学需氧量(COD)降低至1125 mg/L,苯酚回收率约98.7%。 采用Fenton氧化技术对该滤液进行氧化降解,结果表明,在优化的实验条件pH=3、Fe2+浓度为1 mmol/L下,H2O2用量为15 mL/L时,残余的氯酚类即可以被有效降解,降解后的水样经调碱性将铁或亚铁离子沉淀后为无色透明的溶液;联合处理后,水样COD减小到52 mg/L,该值满足国家工业污水排放标准。  相似文献   

7.
Enzymatic oxidation of phenolic compounds is a widespread phenomenon in plants. It is responsible for the formation of many oligomers and polymers, which are generally described as the result of a combinatorial coupling of the different radicals formed through oxidation of the phenol group and delocalization of the radical. We focused our interest on several phenolic compounds that are present in plants and known to form, under enzymatic oxidation, oligomers with different type of linkages between monomers. To explain this diversity of inter-monomer linkages and their variation according to the experimental procedure used for the enzymatic oxidation, we report an alternative mechanistic pathway involving dismutation of the radicals, leading to the formation of carbocations which, thereafter, react with nucleophilic species present in the medium. This alternative pathway allows the understanding of peculiar linkages between monomeric units in the oligomer and offers new insights for understanding the formation of phenolic biopolymers in plants.  相似文献   

8.
程琪  聂小娃  郭新闻 《分子催化》2022,36(2):145-161
采用密度泛函理论(DFT)计算研究了苯酚、邻甲酚、愈创木酚在不同结构Ru-Fe(211)表面上吸附活化性能和加氢脱氧反应路径.结果表明,Ru掺杂能促进H2分子在Fe(211)表面上解离,提高加氢脱氧反应速率.酚类在1Ru_(ads)-Fe(211)表面上吸附比在1Ru_(sub)-Fe(211)表面上更稳定,苯酚和邻甲酚脱羟基步骤能垒分别降低0.13和0.28 eV,有利于生成芳烃.愈创木酚在1Ru_(sub)-Fe(211)表面上加氢脱氧优势路径是先脱甲氧基生成苯酚,苯酚再加氢脱氧生成产物苯(速控步骤能垒1.16 eV);而在1Ru_(ads)-Fe(211)表面上愈创木酚先脱羟基再脱甲基生成苯酚的路径更具有动力学优势(速控步骤能垒1.21 eV).计算结果表明Ru掺杂方式影响Fe催化剂对酚反应分子的吸附稳定性以及加氢脱氧反应路径和性能.与1Ru掺杂Fe(211)催化剂相比,增加Ru原子数形成4Ru_(ads)-Fe(211),能够进一步提高酚类反应物的吸附强度,但导致加氢脱氧反应能垒升高.因此,在Fe催化剂上以表面吸附的形式掺杂少量贵金属Ru更利于酚类加氢脱氧生成芳烃.  相似文献   

9.
Application of our original photooxidation-reduction methodology to prenylated dihydroxycoumarin and trihydroxyxanthone compounds led to the corresponding ortho-(2-hydroxy-3-methylbut-3-enyl)phenol derivatives with yields ranging from 8 to 65%. In most of the reported experiments, the oxidation products distribution, after the photooxygenation step, was controlled by the competition between the large group effect and the stabilising phenolic assistance effect. We also showed that ortho-(3-hydroxy-3-methylbut-1-enyl)phenol derivatives could be considered as biogenetic precursors of 2,2-dimethylbenzopyranic structures.  相似文献   

10.
11.
The stabilization of polyolefins against γ-sterilization has been studied with single or binary additive system. The present attempt is to utilize synergistic mixtures of stabilizers which are approved for food contact applications. Ethylene-propylene (EP) copolymer has been melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer). Samples were sterilized with different doses of γ-radiation. Stabilization was characterized in terms of changes in the functional groups (oxidation products), tensile properties, yellowing and surface morphology by FTIR spectroscopy, Instron, colorimetry (reflectance) and scanning electron microscopy (SEM), respectively. Results were discussed by comparing the stabilizing efficiency of mixtures with and without phenol system. Among phenol containing systems, where we mostly observe discoloration due to the oxidation of hindered phenol and the combination of secondary HAS, tertiary HAS, organo-phosphite and hindered phenol exhibited improved stabilization efficiency than single or binary additive systems. The mixture of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization whereas their combination with organo-phosphite has exhibited synergistic effect of stabilization even at higher doses of γ-sterilization. The effects have been explained through the interaction between the stabilizers.  相似文献   

12.
We describe the quenching effects of phenolic compounds on the electrogenerated chemiluminescence (ECL) of the Ru(bpy)3(2+) (bpy = 2,2'-bipyridine)/tri-n-propylamine (TPrA) system in aqueous solution. First, the emissions via different ECL routes were examined in the presence of 1,4-benzoquinone. It was found that the interception of the ECL intermediate radicals by the quencher molecules significantly influenced the light emission, especially when the direct coreactant oxidation played a predominant role in producing ECL. The most efficient quenching was observed for the low-oxidation-potential (LOP) ECL at a low concentration of TPrA (<5 mM). The Stern-Volmer constant (K(SV)) of the LOP ECL quenching could be as high as 1.3 x 10(6) M(-1), approximately 700 times larger than that of the photoluminescence quenching. Other phenolic compounds, such as phenol, hydroquinone, catechol, and dopamine, would be oxidized at the potential where the ECL was generated, and the benzoquinone-containing products exhibited ECL quenching effects similar to that of 1,4-benzoquinone. The highly efficient quenching of the LOP ECL by the phenolic compounds may provide a new approach for the determination of these pharmaceutically and environmentally important molecules.  相似文献   

13.
The impact of the combined ascorbic acid and sulfur dioxide antioxidants on white wine oxidation processes was investigated using a range of analytical techniques, including flow injection analysis for free and total sulfur dioxide and two chromatographic methods for ascorbic acid, its oxidative degradation products and phenolic compounds. The combination of different analytical techniques provided a fast and simultaneous means for the monitoring of oxidation processes in a model wine system. In addition, the initial mole ratio of sulfur dioxide to ascorbic acid was varied and the model wine complexity was increased by the inclusion of metal ions (copper(II) and iron(II)). Sulfur dioxide was found not to be a significant binder of ascorbic acid oxidative degradation products and could not prevent the formation of certain phenolic pigment precursors. The results provide a detailed insight into the ascorbic acid/sulfur dioxide antioxidant system in wine conditions.  相似文献   

14.
Ojala M  Ketola RA  Virkki V  Sorsa H  Kotiaho T 《Talanta》1997,44(7):1253-1259
Two membrane inlet mass spectrometric (MIMS) methods for determining phenolic compounds in water are described and compared, namely direct analysis and analysis after acetylation of the phenolic compounds. Direct analysis of phenolic compounds in water is a very simple and rapid method and detection limits are relatively low (from 30 mug 1(-1) for phenol to 1000 mug 1(-1) for 4-nitrophenol). Analysis of phenolic compounds after aqueous acetylation is also a very simple and rapid method, and the detection limits are even two orders of magnitude lower than in the direct analysis. For example the detection limit of phenol acetate is 0.5 mug 1(-1) and that of 4-nitrophenol is 10 mug 1(-1). The acetylation method was also tested in the analysis of phenolic compounds from contaminated surface water samples.  相似文献   

15.
A Bi-doped TiO2 anode, which is prepared from a mixed metal oxide coating deposited on Ti metal, is shown to be efficient for conventional water splitting. In this hybrid photovoltaic-electrochemical system, a photovoltaic (PV) cell is used to convert solar light to electricity, which is then used to oxidize a series of phenolic compounds at the semiconductor anode to carbon dioxide with the simultaneous production of molecular hydrogen from water/proton reduction at the stainless steel cathode. Degradation of phenol in the presence of a background NaCl electrolyte produces chlorinated phenols as reaction intermediates, which are subsequently oxidized completely to carbon dioxide and low-molecular weight carboxylic acids. The anodic current efficiency for the complete oxidation of phenolic compounds ranges from 3% to 17%, while the cathodic current efficiency and the energy efficiency for hydrogen gas generation range from 68% to 95% and 30% to 70%, respectively.  相似文献   

16.
The reactivity of the (-)-epicatechin structure towards caffeoylquinic acid o-quinones was studied in an apple juice model solution. The approach consisted in considering separately the reactivities of the two phenolic moieties of an (-)-epicatechin molecule: phloroglucinol and 4-methylcatechol were chosen to represent A- and B-rings, respectively. The oxidation products were characterised by RP-HPLC coupled with electrospray ionisation Mass spectrometry (MS). The reactivities of the A- and B-rings were clearly different on the basis of the oxidation products formed. Both A- and B-rings could be involved in covalent bond formation, but electron transfers only occurred with the B-ring. Most of the (-)-epicatechin oxidation products were linked by A/B-ring linkage ("head-to-tail" intermolecular coupling). After this first dimerisation step, intramolecular reactions seemed to be favoured. Therefore, the complexity of oxidation products in apple juice does not only result from an extensive polymerisation of native phenolic compounds, but also from a multiplicity of small molecules in different oxidation states and isomeric forms.  相似文献   

17.
In our previous study we have found the synergistic combinations of stabilizers which follow different mechanisms of stabilization and are approved for food contact and biomedical applications. The present attempt is to test the potentials of those systems in stabilizing γ-sterilized isotactic polypropylene (i-PP). Isotactic polypropylene was melt-mixed with hindered amine stabilizers (HAS), phenolic antioxidants and organo-phosphites (hydroperoxide decomposer) and sterilized with different doses of γ-radiation. Stabilization was monitored in terms of changes in the functional groups (oxidation products), tensile properties, yellowing and surface morphology by FTIR spectroscopy, Instron, colorimetry (reflectance) and scanning electron microscopy (SEM), respectively. The trend in stabilizing the efficiency of binary (1:1), ternary (1:1:1) and quaternary (1:1:1:1) additive systems was confirmed by comparing the stabilizing efficiency of mixtures with and without phenol system as well as with their counter parts of EP copolymer matrix. The binary system of secondary HAS and tertiary HAS, has shown antagonistic effect of stabilization whereas their combination with organo-phosphite has exhibited synergistic effect even at higher doses of γ-sterilization. Due to the oxidation of hindered phenol, phenol systems have shown discoloration and it was reduced by mixing with secondary HAS, tertiary HAS and organo-phosphite. The response of the stabilizer systems is better to ethylene-propylene (EP) copolymer than to i-PP in terms of stabilization.  相似文献   

18.
The characteristic resistance to oxidation of virgin olive oil is related to its unique fatty acid composition in addition to several minor components that have antioxidant properties. Among the latter, phenols are the most important. Several factors can influence the chemical or enzymatic oxidative processes that extend or shorten the shelf-life of olive oil. Furthermore, the amount of phenolic compounds extracted during production is fundamental for the oxidative and nutritional quality of the oil. In fact, it is well known that different steps used for preparation of virgin olive oil may determine differences in the quantities of phenol. At present, various analytical methods are available to analyze the hydrophilic components, including spectrophotometric assays (traditional) and high resolution chromatographic techniques (HRGC, HPLC, HPCE). In this review we summarize these different methodologies and demonstrate that the amount of phenolic compounds in virgin olive oil as determined by both traditional and high resolution techniques can be influenced by different factors including the olive cultivar and degree of ripeness, as well as by production and extraction technologies.  相似文献   

19.
The conversion of raw fruits and vegetables, including tomatoes into processed food products creates side streams of residues that can place a burden on the environment. However, these processed residues are still rich in bioactive compounds and in an effort to valorize these materials in tomato by-product streams, the main aim of this study is to extract proteins and identify the main phenolic compounds present in tomato pomace (TP), peel and skins (TPS) by HPLC-DAD-ESI-QTOF. Forty different phenolic compounds were identified in the different tomato extracts, encompassing different groups of phenolic compounds, including derivatives of simple phenolic acid derivatives, hydroxycinnamoylquinic acid, flavones, flavonones, flavonol, and dihydrochalcone. In the crude protein extract (TPE) derived from tomatoes, most of these compounds were still present, confirming that valuable phenolic compounds were not degraded during food processing of these co-product streams. Moreover, phenolic compounds present in the tomato protein crude extract could provide a valuable contribution to the required daily intake of phenolics that are usually supplied by consuming fresh vegetables and fruits.  相似文献   

20.
Novel reaction pathways for the hypervalent iodine-mediated oxidation of bioactive phenols containing extended conjugated pi-systems are described. Oxidation of 4-hydroxystilbenes in methanol using a hypervalent iodine-based oxidant led to the formal 1,2-addition of methoxy groups across the central stilbene double bond. Treatment of the structurally related 4-hydroxyisoflavone with di(trifluoroacetoxy)iodobenzene leads to the surprising formation of 2,4'-dihydroxybenzil. Potential mechanisms for these new reaction pathways are discussed, and the X-ray crystal structure of 2,4'-dihydroxybenzil is presented. In contrast, oxidation of the corresponding 3-hydroxystilbenes and 3-hydroxyisoflavone led to conventional dienone oxidation products. The antitumour implications of these oxidation processes are briefly highlighted; the novel 4-substituted phenolic oxidation products were found to be inactive in terms of in vitro antitumour cellular activity, whereas the 3-substituted phenol products gave novel agents with potent and enhanced antitumour activity in the HCT 116 cancer cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号