首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A Nafion film containing tris(2,2′-bipyridine)ruthenium(II) as a luminescence probe was applied to photodetection of oxygen in a gas by utilizing the luminescence quenching by dioxygen. The linear Stern-Volmer plots of the emission intensity with respect to the oxygen concentration allowed quantitative determination of the oxygen. From the emission decay studied by a single-photon counting method, it was concluded that the quenching of the excited state Ru complex by oxygen proceeds by a conventional dynamic mechanism.  相似文献   

2.
Klimant I  Belser P  Wolfbeis OS 《Talanta》1994,41(6):985-991
New ruthenium(II) diimine complexes are presented which are useful as luminescent oxygen probes. Because their luminescence excitation maxima are between 535 and 570 nm, they can be photo-excited by green LEDs which are much brighter than the blue LEDs used so far for existing Ru diimines. The spectral and photophysical properties as well as the solubility properties of the new probes are investigated and discussed in terms of quenching, photostability, and lifetimes. The probes were incorporated into organic polymers by three different methods, to obtain oxygen-sensitive materials for use in optical oxygen sensing. The membranes were characterized with respect to oxygen sensitivity, luminescence intensity, response times, and stability. Notwithstanding the poor luminescence of the new ruthenium(II) probes, their stability, LED compatibility and efficient quenching by oxygen makes them an interesting alternative to existing luminescent oxygen probes.  相似文献   

3.
Oxygen-sensing elements containing single-layered structures of luminescent indicators of ruthenium(II) bipyridyl complexes on glass surfaces prepared by covalent attachment and LB deposition are described. They are capable of detecting gaseous oxygen concentration by luminescence quenching of the indicator with reproducible and large quenching efficiencies that are comparable to the best quenching efficiencies obtained by other ruthenium(II) polypyridine based complexes immobilized in matrixes. The large quenching efficiencies for both films imply that the probe complexes are effectively quenched by oxygen, which is probably due to the thin single-layered structures with large surface-to-area ratio and short distance between the probe complexes and oxygen.  相似文献   

4.
Oxygen concentration is an important parameter in environmental, chemical and other fields. Oxygen sensor based on luminescence quenching by oxygen have been developed and wide applied. The oxygen quenching process is described by the Stern-Volmer equation. Ruthenium complex are chosen as fluorescence indicator because they are particularly attractive for oxygen sensing, exhibit high luminescent quantum yield, long excited-state lifetime, large Stokes shift, and strong absorption in the blue-green spectral region[1]. The sensor involves immobilizing the ruthenium complex within a porous sol-gel-processed film. Sol-gel process has many advantages as a method of immobilization. At ambient temperature, it allows the fabrication of a tough, inert, porous glass material with a high surface area. Sol-gel-derived silica film has a low optical absorption in the visible and UV region of the spectrum and is relatively inexpensive to produce[2].  相似文献   

5.
Photophysical properties for a number ruthenium(II) and osmium(II) bipyridyl complexes are reported in dilute acetonitrile solution. The lifetimes of the excited metal to ligand charge transfer states (MLCT) of the osmium complexes are shorter than for the ruthenium complexes. Rate constants, kq, for quenching of the lowest excited metal to ligand charge transfer states by molecular oxygen are found to be in the range (1.1-7.7) x 10(9) dm3 mol(-1) s(-1). Efficiencies of singlet oxygen production, fDeltaT, following oxygen quenching of the lowest excited states of these ruthenium and osmium complexes are in the range of 0.10-0.72, lower values being associated with those compounds having lower oxidation potentials. The rate constants for quenching of the excited MLCT states, kq, are found to be generally higher for osmium complexes than for ruthenium complexes. Overall quenching rate constants, kq were found to give an inverse correlation with the energy of the excited state being quenched, and also to correlate with the oxidation potentials of the complexes. However, when the contribution of quenching due exclusively to energy transfer to produce singlet oxygen, kq1, is considered, its dependence on the energy of the excited states is more complex. Rate constants for quenching due to energy dissipation of the excited MLCT states without energy transfer, kq3, were found to show a clear correlation with the oxidation potential of the complexes. Factors affecting both the mechanism of oxygen quenching of the excited states and the efficiency of singlet oxygen generation following this quenching are discussed. These factors include the oxidation potential, the energy of the lowest excited state of the complexes and spin-orbit coupling constant of the central metal.  相似文献   

6.
The ruthenium(II) diimine complexes, such as ruthenium(II) tris(bipyridyl), Ru(bpy)3 2+, possess highly luminescent excited states that are not only readily quenched by oxygen but also by an increase in temperature. The former effect can be rendered insignificant by encapsulating the complex in an oxygen impermeable polymer, although encapsulation often leads also to a loss of temperature sensitivity. The luminescence properties of Ru(bpy)3 2+ encapsulated in PVA were studied as a function of oxygen concentration and temperature and found to be independent of the former, but still very sensitive towards the latter. The results were fitted to an established Arrhenius-type equation, based on thermal quenching of the emitting state by a slightly higher (DeltaE= 3100 cm(-1))3d-d state that deactivates very rapidly (10(-13) s)via a non-radiative process.  相似文献   

7.
The luminescence decay and spectral behavior of ruthenium(II)-tris-1,2-bipyridine dichloride dissolved in different organically modified silicate gel matrixes were investigated. Dip-coated thin films were synthesized from tetraethoxysilane (TEOS), methyltriethoxysilane (MTEOS), ethyltriethoxysilane (ETEOS), and methyl- trimethoxysilane (MTMOS). A blue shift in the ruthenium complex emission spectrum with respect to the aqueous solution was observed for all the films on the sol to gel conversion. This spectral shift was slightly dependent on the precursor used to obtain the films and independent of the reaction pH to prepare the "sol". In the data treatment of the time-resolved luminescence measurements, it was assumed that the distribution of the luminophore in the films was nonhomogeneous. The analysis of the luminescence decay profiles was based on a multisite model. All decay curves are best described by a double-exponential model. The parameters of the decay components depended principally on the thermal treatment used in the processing of the films. The lifetimes decreased and the emission espectra showed a red shift with the increase in the drying temperature. A luminescence quenching of the ruthenium complex in the films by dissolved oxygen in aqueous solution was also observed. The quenching rate constant obtained from the preexponential amplitude-weighted mean lifetimes (tau(M)) was in the order of 10(9) M(-1) s(-1). When a phenolic derivative was used as quencher the process rate was greatly reduced compared to the quenching in water. It would seem that the metallic complex sequestered within the film is placed either into a higher microviscosity microenvironment or in a location which the phenolic quencher cannot access. In both cases, the quenching plot based on tau(o)(M)/tau(M) could be fitted satisfactorily by a sum of two terms of Stern-Volmer. This fact is indicative of the matrix microheterogeneity for the films and is fully consistent with the biexponential nature of the luminescence intensity decay profiles.  相似文献   

8.
Polysiloxanes containing pendant tris(2,2′-bipyridine)ruthenium(II) complex (Ru(bpy)32+) were prepared by reaction of polysiloxane-pendant 2,2′-bipyridine (PSiO-bpy) with cis-Ru(bpy)2Cl2. In methanol solution, the polymer pendant Ru(bpy)32+ showed absorption maximum at 456nm and emission maximum at around 609nm, both of which are shifted to longer wavelength than the monomeric Ru(bpy)32+. The lifetime τ0 of the excited polymer complex with low Ru(bpy)32+ content was almost the same as that of the monomeric one in methanol (830ns), but τ0 of the polymer with higher complex content was shorter because of a concentration quenching. In a solid state, τ0 was much shorter (306–503ns) than that in a methanol solution contrary to the conventional polymeric system. Higher complex content in the polymer film caused higher glass transition temperature (Tg), but shorter τ0. These results indicate concentration quenching in the polymer film. The excited polymer pendant Ru(bpy)32+ was quenched by oxygen, and the relative emission intensity followed the Stern-Volmer equation. In a methanol solution the quenching rate constant (kq) was the same order of magnitude as the monomeric complex, and independent of the complex content in the polymer. In a film, kq was higher for the polymer with higher complex content.  相似文献   

9.
Sol-gel-derived silica films were fabricated by dip-coating onto planar and optical fibre substrates. The films were pre-doped with the oxygen-sensitive ruthenium complex [Ru(II)-tris(4,7-diphenyl-1,10-phenanthroline)], whose fluorescence is quenched in the presence of oxygen. The structure and behaviour of sol-gel films is related to the fabrication parameters. In order to optimise the films for oxygen sensing in gaseous and in aqueous media, the quenching behaviour was monitored as a function of dip-speed and water: precursor ratio. By adjusting the above parameters, film properties can be tailored to optimise oxygen quenching in particular concentration ranges and environments.  相似文献   

10.
In this research, bis(2,2'-bipyridine)(4-methyl-2,2'-bipyridine-4'-carboxylic acid)ruthenium(II).2PF(6)- complex (1), was first used as a fluorescent chemosensor to recognize Cu(II) in EtOH/H(2)O (1:1, v/v) solution. The response of the sensor is based on the fluorescence quenching of complex 1 by binding with Cu(II). The analytical performance characteristics of the proposed Cu(II)-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Cu(II) with a linear range covering from 5.0 x 10(-8) to 1.0 x 10(-4) M and a detection limit of 4.2 x 10(-8) M. The experiment results show that the response behavior of 1 to Cu(II) is pH independent in medium condition (pH 4.0 - 8.0), and show excellent selectivity for Cu(II) over other transition metal cations.  相似文献   

11.
A new series of homoleptic metallodendrimers has been synthesized through ruthenium‐metal complexation by dendritically modified bathophenanthroline ligands. The presence of hydrophilic oligo(ethylene glycol) groups on the surface of the monodisperse metal complexes enabled the solubilization of all of the fractal species in a wide range of solvents, including water. The specific properties of all of these compounds have been systematically investigated by using photophysical techniques as a function of the generation number. Accordingly, the encapsulation of the highly luminescent [Ru(dpp)3]2+‐type (dpp=4,7‐diphenyl‐1,10‐phenanthroline) core unit within a dendritic microenvironment creates a powerful means to shield the center from dioxygen quenching. This shielding effect, as exerted on the phosphorescent ruthenium‐derived center, is reflected by enhanced emission intensities and extended excited‐state lifetimes that are close to the highest values reported so far, even in an air‐equilibrated aqueous medium. Interestingly, when inspecting the largest dendritic assembly, that is, the third‐generation assembly, significant drops in emission quantum yields and lifetimes are observed. This anomalous behavior has been attributed to the folding of the branches towards the luminescent core.  相似文献   

12.
本文根据氧分子能有效地猝灭金属有机络合物的荧光的原理,研制了一种氧传感器。  相似文献   

13.
Monomers containing (trisbipyridine) ruthenium(II), (bisbipyridine) palladium(II), and heteroleptic ruthenium complexes were synthesized and polymerized via ruthenium‐catalyzed ring‐opening metathesis polymerization in nonpolar solvents. The solubility of the resulting polyelectrolytes in nonpolar solutions could be tuned by alkyl functionalization of the ligands around the metal centers. These polymers are the first polynorbornenes containing a 2,2′‐bipyridine‐based metal complex at each repeating unit and might be used in numerous applications, including luminescent and electroluminescent materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2973–2984, 2004  相似文献   

14.
Oxygen imaging of biological cells and tissues is becoming increasingly important in cell biology and in the pathophysiology of various hypoxia-related diseases. The optical oxygen-sensing method using luminescent probes provides very useful, high spatial resolution information regarding oxygen distribution in living cells and tissues. This review focuses on recent advances in biological oxygen measurements based on the phosphorescence quenching of probe molecules by oxygen, and on hypoxia-sensitive fluorescent probes. Special attention is devoted to metal complex probes, Pt(II)- and Pd(II)-porphyrins, Ru(II) complexes, and Ir(III) complexes. Current knowledge regarding the mechanism of phosphorescence quenching of metal complexes by oxygen is described in relation to the oxygen sensitivity of the probes, and recent advances in optical oxygen probes and detection techniques for intracellular and tissue oxygen measurements are reviewed, emphasizing the usefulness of chemical modifications for improving probe properties. Tissue oxygen imaging and hypoxic tumor imaging using these metal complex probes demonstrate the vast potential of optical oxygen-sensing methods using luminescent probes.  相似文献   

15.
The synthesis and photophysical properties of novel luminescent ruthenium(II) bipyridyl complexes containing one, two, or six lower rim acid-amide-modified calix[4]arene moieties covalently linked to the bipyridine groups are reported which are designed to coordinate and sense luminescent lanthanide ions. All the Ru-calixarene complexes synthesized in this work are able to coordinate Nd(3+), Eu(3+), and Tb(3+) ions with formation of adducts of variable stoichiometry. The absorbance changes allow the evaluation of association constants whose magnitudes depend on the nature of the complexes as well as on the nature of the lanthanide cation. Lanthanide cation complex formation affects the ruthenium luminescence which is strongly quenched by Nd(3+) ion, moderately quenched by the Eu(3+) ion, and poorly or moderately increased by the Tb(3+) ion. In the case of Nd(3+), the excitation spectra show that (i) the quenching of the Ru luminescence occurs via energy transfer and (ii) the electronic energy of the excited calixarene is not transferred to the Ru(bpy)(3) but to the neodymium cation. In the case of Tb(3+), the adduct's formation leads to an increase of the emission intensities and lifetimes. The reason for this behavior was ascribed to the electric field created around the Ru calix[4]arene complexes by the Tb(3+) ions by comparison with the Gd(3+) ion, which behaves identically and can affect ruthenium luminescence only by its charge. However, especially for compounds 1 and 3, it cannot be excluded that some contribution comes from the decrease of vibrational motions (and nonradiative processes) due to the rigidification of the structure upon Tb(3+) complexation. In the case of Eu(3+), compounds 1, 2, and 4 were quenched by the lanthanide addition but the quenching of the ruthenium luminescence is not accompanied by europium-sensitized emission which suggests that an electron-transfer mechanism is responsible for the quenching. On the contrary, compound 3 exhibits enhanced emission upon addition of Eu(3+) (as nitrate salt); it is suggested that the lack of quenching in the [3.2Eu(3+)] adduct is due to kinetic reasons because the electron-transfer quenching process is thermodynamically allowed.  相似文献   

16.
Polypyridyl ruthenium (Ru) complexes 1–3 were prepared. Their photophysical properties were investigated by UV-Vis absorption and luminescence emission spectra. The luminescent lifetimes of these Ruthenium complex were prolonged by more than 5 folds (τ = 2.50 μs for complex 3) when compared with the parent Ru complex 1 (τ = 0.45 μs). We propose that the extended luminescent lifetime of complex 3 is due to the equilibrium between 3MLCT state and the pyrene localized 3π-π* triplet state (3IL). The luminescent O2-sensing property of the complexes in solution and the IMPEK-C polymer film were studied, and the O2 sensing was quantified with the two-site model. The oxygen-sensing property of the Ru complexes can be improved by 104-fold with extension of the luminescent lifetimes. For example, the quenching constant K SV was improved from 0.0023 Torr−1 of 1 to 0.2393 Torr−1 for 3. Our results demonstrated a versatile approach for the preparation of Ru (II) polypyridine complexes with extended luminescent lifetimes as functional materials, for example, for luminescent oxygen-sensing applications.  相似文献   

17.
以钌配合物为探针分子,分散于经溶胶凝胶法制备的SiO2基质中形成对空气压力变化敏感的压敏漆。测定了它们的发光光谱及其氧猝灭性能,定量研究了发光和氧猝灭的关系,并将压敏漆用于风洞模拟试验,在较宽压力变化范围内获得了良好的线性关系。表征对压力变化灵敏度的直线斜率高达0.75.显示出所制备的空气动力压敏漆的性能优异,具有开发应用前景。  相似文献   

18.
The complex [Ru(5,6-Me2Phen)3]tfpb2 has been examined as a solid-state benzene and oxygen sensor. The crystalline solid undergoes a reversible vapochromic shift of the emission lambda max to higher energy in the presence of benzene. Additionally, in the presence of oxygen the solid exhibits linear Stern-Volmer quenching behavior. When simultaneously exposed to benzene vapor and oxygen the crystals uptake benzene which inhibits the diffusion of oxygen in the lattice; very little quenching is observed. However, when benzene is removed from the carrier gas, partial loss of benzene occurs and oxygen diffusion is restored resulting in quenching of the emission. The practicality of this crystalline solid as a benzene sensor was investigated by examination of a lower concentration of benzene vapor (0.76%).  相似文献   

19.
Two novel tris(bipyridine)ruthenium(II) complexes bearing two and six beta-cyclodextrin binding sites on their ligands have been synthesised and characterised. Complex 1, bearing two cyclodextrins, adopts a conformation in aqueous solution where parts of the aromatic ligands are self-included into the cyclodextrin moieties. This results in a loss of symmetry of the complex and gives rise to a much more complicated 1H NMR spectrum than expected. Photophysical studies indicate that the appended cyclodextrins protect the luminescent ruthenium core from quenching by oxygen, which results in longer excited state lifetimes and higher emission quantum yields compared with the reference compound, the unsubstituted ruthenium tris(bipyridine). Inclusion of suitable guests such as dialkyl-viologens leads to a quenching of the luminescence of the central unit. In these supramolecular donor-acceptor dyads an efficient photoinduced electron transfer from the excited ruthenium moiety (the donor) to the viologen unit (the acceptor) is observed. The alkyl chain length of the acceptor plays an important role on the binding properties; when it exceeds a certain limit the binding becomes strong enough for electron transfer to occur. Interestingly, a viologen with only one long alkyl tail instead of two shows no efficient quenching; this indicates that cooperative interactions between two cyclodextrins binding one viologen are essential to raise the binding constant of the supramolecular dyad.  相似文献   

20.
During the last decade, our research group has prepared a number of metal dithiocarbamato derivatives of Pt, Pd and Au that were expected to resemble the main features of cisplatin together with higher activity, improved selectivity and bioavailability, and lower side-effects. Furthermore, we have already published the synthesis, characterization and in vitro cytotoxicity studies of novel ruthenium(III) dithiocarbamato complexes such as [RuL(3)] monomers (11) and α-[Ru(2)L(5)]Cl dimers (12) with five different dithiocarbamate ligands. As both the monomer and the dinuclear complexes have shown significant antitumor activity in different human tumor cell lines, we decided to widen the characterization studies and to analyse thoroughly their behavior in physiological-like medium by UV-visible and CD spectroscopy. In the present paper we report on the crystal structure of [Ru(DMDT)(3)], [Ru(PDT)(3)] and [Ru(ESDT)(3)] complexes and we determine the spin state of the paramagnetic Ru(III) by means of Evans' method. Then, we discuss in detail the UV-visible spectral data of the complexes in different medium. All the studied complexes are stable in dimethyl sulfoxide, and show low solubility in phosphate buffered saline solution, particularly the monomer species, even at low concentration, while increased solubility for both types of complexes have been found in the presence of bovine serum albumin (BSA). Moreover, no changes on the coordination sphere of the metal, as well as no direct interaction between the BSA protein and the complex have been identified by UV-visible spectroscopy. However, some conformational changes on the BSA structure, induced by the ruthenium(III) complexes have been confirmed by CD spectroscopy, indicating a probable secondary electrostatic interaction between the metal complex and the peptide. In addition, no significant interaction has been demonstrated with the components of Dulbecco's Modified Eagle's Medium, used for the in vitro assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号