首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Today the synthesis of silver nanoparticles is very common due to their numerous applications in various fields. Silver nanoparticles have unique properties such as: optical and catalytic properties, which, depend on the size and shape of the produced nanoparticles. So, today the production of silver nanoparticles with different shapes which have various uses in different fields such as medicine, are noted by many researchers. This article, is an attempt to present an overview of the shape-controlled synthesis of silver nanoparticles using various methods.  相似文献   

2.
Nanomaterials with unique electronic, optical and catalytic properties have recently been at the forefront of research due to their tremendous range of applications. Taking gold, silver and titania nanoparticles as examples, we have reviewed the current research works on paper functionalized by these nanoparticles. The functionalization of paper with only a very small concentration of nanoparticles is able to produce devices with excellent photocatalytic, antibacterial, anti-counterfeiting, Surface Enhanced Raman Scattering (SERS) and Surface Plasmon Resonance (SPR) performances. This review presents a brief overview of the properties of gold, silver and titania nanoparticles which contribute to the major applications of nanoparticles-functionalized paper. Different preparation methods of the nanoparticles-functionalized paper are reviewed, focusing on their ability to control the morphology and structure of paper as well as the spatial location and adsorption state of nanoparticles which are critical in achieving their optimum applications. In addition, main applications of the nanoparticles-functionalized papers are highlighted and their critical challenges are discussed, followed by perspectives on the future direction in this research field. Whilst a few studies to date have characterized the distribution of nanoparticles on paper substrates, none have yet optimized paper as a nanoparticles' substrate. There remains a strong need to improve understanding on the optimum adsorption state of nanoparticles on paper and the heterogeneity effects of paper on the properties of these nanoparticles.  相似文献   

3.
Long YM  Zhao QL  Zhang ZL  Tian ZQ  Pang DW 《The Analyst》2012,137(4):805-815
Fluorescent nanoparticles have attracted much attention over the last two decades. Due to the size- and composition-dependent optical and electrical properties, fluorescent nanoparticles have been emphasized in electronic, optical and biomedical applications. Till now, many kinds of methods have been developed to fabricate diverse fluorescent nanoparticles, which include pyrolysis, template synthesis, hydrothermal synthesis, microemulsion, electrochemical methods and so on. Among them, electrochemical methods are favored for relatively good controllability, ease of operation and mild reaction conditions. By adjusting the applied potential, current, components of the electrolyte and other relevant parameters, the fluorescent nanoparticles could be electrochemically manufactured with tunable sizes, compositions and surface structure, which allows for the modification of electronic and optical properties. Therefore, electrochemical methods are regarded as important means in preparing fluorescent nanoparticles. This review focuses on the recent progress in electrochemical fabrications of fluorescent nanoparticles (together with their optical properties and some applications in optoelectronics and biomedicine).  相似文献   

4.
贵金属复合纳米粒子具有不同于单组分纳米粒子的独特的光、电和催化等物理与化学性能,是构筑新型功能复合材料的重要单元,在传感器、光学材料、催化剂及生物领域都有着重要应用,已成为当前纳米材料科学研究领域中的前沿和热点。本文主要评述了具有核壳、异质结构以及合金结构的贵金属复合纳米粒子的制备、物理与化学性能及应用等方面的研究进展。  相似文献   

5.
The optical properties of silver nanoparticles embedded in poly(methylmethacrylate) (PMMA) was investigated as well as the influence of silver nanoparticles on the thermal properties of polymer matrix. The average size and particle size distribution of silver nanoparticles was determined using transmission electron microscopy. The obtained transparent nanocomposite films were optically characterized using UV-Vis and FTIR spectroscopy. Thermal stability of polymer matrix was improved upon incorporation of small amount of silver nanoparticles. Also, silver nanoparticles have pronounced effect on thermo-oxidative stability of PMMA matrix. The glass transition temperatures of nanocomposites are lower compared to the pure polymer.  相似文献   

6.
Gold has always been regarded as a symbol of nobility, and its shiny golden appearance has always attracted the attention of many people. Gold has good ductility, molecular recognition properties, and good biocompatibility. At present, gold is being used in many fields. When gold particles are as small as several nanometers, their physical and chemical properties vary with their size in nanometers. The surface area of a nano-sized gold surface has a special effect. Therefore, gold nanoparticles can, directly and indirectly, give rise to different biological activities. For example, if the surface of the gold is sulfided. Various substances have a strong chemical reactivity and are easy to combine with sulfhydryl groups; hence, nanogold is often used in biomedical testing, disease diagnosis, and gene detection. Nanogold is easy to bind to proteins, such as antibodies, enzymes, or cytokines. In fact, scientists use nanogold to bind special antibodies, as a tool for targeting cancer cells. Gold nanoparticles are also directly cytotoxic to cancer cells. For diseases caused by inflammation and oxidative damage, gold nanoparticles also have antioxidant and anti-inflammatory effects. Based on these unique properties, gold nanoparticles have become the most widely studied metal nanomaterials. Many recent studies have further demonstrated that gold nanoparticles are beneficial for humans, due to their functional pharmacological properties in a variety of diseases. The content of this review will be the application of gold nanoparticles in treating or diagnosing pressing diseases, such as cancers, retinopathy, neurological diseases, skin disorders, bowel diseases, bone cartilage disorders, cardiovascular diseases, infections, and metabolic syndrome. Gold nanoparticles have shown very obvious therapeutic and application potential.  相似文献   

7.
Inorganic nanoparticles have become a research focus in numerous fields because of their unique properties that distinguish them from their bulk counterparts. Controlling the size and shape of nanoparticles is an essential aspect of nanoparticle synthesis. Preparing inorganic nanoparticles by using block copolymer templates is one of the most reliable routes for tuning the size and shape of nanoparticles with a high degree of precision. In this Review, we discuss recent progress in the design of block copolymer templates for crafting spherical inorganic nanoparticles including compact, hollow, and core–shell varieties. The templates are divided into two categories: micelles self‐assembled from linear block copolymers and unimolecular star‐shaped block copolymers. The precise control over the size and morphology of nanoparticles is highlighted as well as the useful properties and applications of such inorganic nanoparticles.  相似文献   

8.
纳米四氧化三铁(Fe3O4)的制备和形貌   总被引:15,自引:0,他引:15  
纳米Fe3O4因其特殊的理化性质和在生物医学领域潜在的应用价值而得到广泛研究。本文综述了纳米Fe3O4的制备方法,包括直流电弧等离子体法、热分解方法、沉淀法、水热法、电化学法、微乳液法、溶胶-凝胶法、有机物模板法、回流法等,结合作者在Fe3O4纳米粒子制备方面的最新工作,介绍了Fe3O4纳米粒子的新颖形貌。对纳米级Fe3O4制备研究的发展趋势进行了展望。  相似文献   

9.
Stable microemulsions with water contents as high as 10 vol % have been obtained, including those additionally containing silver and gold nanoparticles. Especial attention has been focused on the influence of water and stabilizer contents on the structure of adsorption layers on nanoparticles. The properties of nanoparticles obtained via the traditional microemulsion synthesis have been compared with the properties of nanoparticles that have preliminarily been concentrated with the help of electrophoresis and dried. The electrophoretic concentration and drying of nanoparticles have been shown to improve the stability of their microemulsions. Microemulsions with the highest content of water have been studied to determine the occurrence of percolation and the influence of nanoparticles on their percolation temperature and electrical conductivity.  相似文献   

10.
The ability to engineer the surface properties of magnetic nanoparticles is important for their various applications, as numerous physical and chemical properties of nanoscale materials are seriously affected by the chemical constitution of their surfaces. For some specific applications, nanoparticles need to be transferred from a polar to a nonpolar environment (or vice versa) after synthesis. In this work we have developed a universal method for the phase transfer of magnetic nanoparticles that preserves their shape and size. Octadecyltrimethoxysilane was used to cap the surfaces of the aqueous magnetic nanoparticles, thereby allowing their transfer into nonpolar solution. The resulting hydrophobic magnetic nanoparticles were transferred back into aqueous solution by subsequently covering them with an egg‐PC lipid monolayer. The superparamagnetic properties of the particles were retained after the phase transfer. The maximum transfer yields are dependent on their particle size with a maximum value of 93.16±4.75 % for magnetic nanoparticles with a diameter of 100 nm. The lipid‐modified magnetic particles were stable over 1 week, and thus they have potential applications in the field of biomedicine. This work also provides a facile strategy for the controllable engineering of the surface properties of nanoparticles.  相似文献   

11.
Hollow metallic nanoparticles have been attracting the attention of many researchers in the past five years due to their new properties and potential applications. The unique structure of the hollow nanoparticles; presence of two surfaces (internal and external), and the presence of both cavities and pores in the wall surfaces of these nanoparticles are responsible for their unique properties and applications. Here the galvanic replacement technique is used to prepare nanocages made of gold, platinum, and palladium. In addition, hollow double shell nanoparticles are made of two metal shells like Au-Pt, Pt-Au, Au-Pd, Pd-Au, Pd-Pt, and Pt-Pd. Silver nanocubes are used as templates during the synthesis of hollow nanoparticles with single metal shell or double shell nanocages. Most of the problems that could affect the synthesis of solid Silver nanocubes used as template as well as the double shell nanocages and their possible solutions are discussed in a detail. The sizes and shapes of the single-shell and double-shell nanocages were characterized by a regular and high-resolution TEM. A SEM mapping technique is also used to image the surface atoms for the double shell hollow nanoparticles in order to determine the thickness of the two metal shells. In addition, optical studies are used to monitor the effect of the dielectric properties of the other metals on the plasmonic properties of the gold nanoshell in these mixed nanoparticles.  相似文献   

12.
Nanoparticles have the advantages over micron‐sized particles to typically provide higher intracellular uptake and drug bioavailability. Emulsion techniques are commonly used methods for producing nanoparticles aiming at high encapsulation efficiency, high stability, and low toxicity. Here, the recent developments of nanoparticles prepared from emulsions, the synthesis of nanoparticles, their physicochemical properties, and their biomedical applications are discussed. Selection of techniques, such as emulsion polymerization, miniemulsion polymerization, microemulsion polymerization, and emulsion‐solvent evaporation processes, strongly influences morphologies, size distributions, and particle properties. Details in the synthetic strategies governing the performance of nanoparticles in bioimaging, biosensing, and drug delivery are presented. Benefits and limitations of molecular imaging techniques are also discussed.  相似文献   

13.
Surface modified silver nano particles were synthesized in a mixture solvent of water-alcohol with Pyridinium di-n-octadecyldithio phosphate(PyDDP) as a modification agent. Themorphology and structure of DDP-coated Ag (Ag-DDP) nanoparticles were characterized using X-ray powder diffraction(XRD), Transmission electron microscopy(TEM), Fourier transform infrared spectrum (FT-IR) and Thermo gravimetric analysis(TGA). Anti wear properties of Ag-DDP nano particles were tested using a four-ball tribological testing machine. The disperse properties of Ag-DDP nanoparticles were evaluated in solvents such as chloroform, benzen, toluene, liquid paraffin, distilled water and ethanol. The results show that Ag-DDP nanoparticles disperse in organic solvents, but they don’t disperse in water or ethanol. The good disperse properties in organic solvents enable Ag-DDP nanoparticles to be used as oil additives. The XRD pattern of Ag-DDP nanoparticles indicates that they have fcc crystal structure, and the modification layer can prevent the oxidation of Ag nanocores. TEM graphs show that Ag-DDP nanoparticles have a homogeneous grain distribution; the average diameter is about 15nm. FT-IR and TGA curves indicate that the existence of modification layer can prevent the adsorption of water on the surface of nanoparticles. Tribological tests show that Ag-DDP nanoparticles have good anti-wear properties in liquid paraffin, and they can improve the applied load of base oil.  相似文献   

14.
The structural and physical properties of nanoparticles of nitromethane are studied by using molecular dynamics methods with a previously developed force field. [Agrawal et al., J. Chem. Phys. 119, 9617 (2003).] This force field accurately predicts solid- and liquid-state properties as well as melting of bulk nitromethane. Molecular dynamics simulations of nanoparticles with 480, 240, 144, 96, 48, and 32 nitromethane molecules have been carried out at various temperatures. The carbon-carbon radial distribution function, dipole-dipole correlation function, core density, internal enthalpy, and atomic diffusion coefficients of the nanoparticles were calculated at each temperature. These properties were used to characterize the physical phases and thus determine the melting transitions of the nanoparticles. The melting temperatures predicted by the various properties are consistent with one another and show that the melting temperature increases with particle size, approaching the bulk limit for the largest particle. A size dependence of melting points has been observed in experimental and theoretical studies of atomic nanoparticles, and this is a further demonstration of the effect for large nanoparticles of complex molecular materials.  相似文献   

15.
Copper nanoparticles with different structural properties and effective biological effects may be fabricated using new green protocols. The control over particle size and in turn size-dependent properties of copper nanoparticles is expected to provide additional applications. Various methods for the synthesis of copper nanoparticles have been reported including chemical methods, physical methods, biological methods, and green synthesis. Biological methods involve the use of plant extracts, bacteria, and fungi. Commendable work has been done regarding the synthesis and stability of copper nanoparticles. There is a need to summarize the behavior of copper nanoparticles in different media under various conditions. Here, a complete list of the literature on the synthesis of copper nanoparticles, their properties, stabilizing agents, factors affecting the morphology, and their applications is presented. The importance of copper nanoparticles compared to other metal nanoparticles are due to high conductivity. Methods for the synthesis of copper nanoparticles, including green protocols using plants and micro-organisms compared chemical methods, have also been reviewed.  相似文献   

16.
无机纳米颗粒在塑料抗紫外的研究中一直备受关注,主要介绍了四种(TiO2、ZnO、SiO2、CeO2)典型的无机纳米颗粒在该领域的应用。首先归纳了其既能吸收又能反射或散射紫外线的抗紫外机理;其次,分别论述了不同无机纳米颗粒适用的紫外光波长范围,以在塑料中的添加方法和应用特点为主线,重点介绍了国内外四种无机纳米颗粒在塑料抗紫外性能中的研究现状和进展;最后,将四种无机纳米颗粒在塑料抗紫外性能中的应用特点进行了对比,提出了应用过程中存在的分散和相容性差等问题,以期为无机纳米颗粒的深入应用和发展提供一定的参考。  相似文献   

17.
Free radicals are generated as byproducts of normal metabolic processes as well as due to exposure to several environmental pollutants. They are highly reactive species, causing cellular damage and are associated with a plethora of oxidative stress-related diseases and disorders. Antioxidants can control autoxidation by interfering with free radical propagation or inhibiting free radical formation, reducing oxidative stress, improving immune function, and increasing health longevity. Antioxidant functionalized metal nanoparticles, transition metal oxides, and nanocomposites have been identified as potent nanoantioxidants. They can be formulated in monometallic, bimetallic, and multi-metallic combinations via chemical and green synthesis techniques. The intrinsic antioxidant properties of nanomaterials are dependent on their tunable configuration, physico-chemical properties, crystallinity, surface charge, particle size, surface-to-volume ratio, and surface coating. Nanoantioxidants have several advantages over conventional antioxidants, involving increased bioavailability, controlled release, and targeted delivery to the site of action. This review emphasizes the most pioneering types of nanoantioxidants such as nanoceria, silica nanoparticles, polydopamine nanoparticles, and nanocomposite-, polysaccharide-, and protein-based nanoantioxidants. This review overviews the antioxidant potential of biologically synthesized nanomaterials, which have emerged as significant alternatives due to their biocompatibility and high stability. The promising nanoencapsulation nanosystems such as solid lipid nanoparticles, nanostructured lipid carriers, and liposome nanoparticles are highlighted. The advantages, limitations, and future insights of nanoantioxidant applications are discussed.  相似文献   

18.
近年来,纳米技术越来越广泛的应用到各个领域,金纳米粒子因其具有许多优良的物理、化学及生物学性质而引起了人们特别的关注。本文综述了金纳米粒子几种经典的合成方法,以及基于金纳米粒子独特的理化性质在病原体、核酸蛋白质检测方面的最新研究进展。  相似文献   

19.
A novel method to produce solution-phase triangular silver nanoparticles is presented. Ag nanoparticles are prepared by nanosphere lithography and are subsequently released into solution. The resulting nanoparticles are asymmetrically functionalized to produce either single isolated nanoparticles or dimer pairs. The structural and optical properties of Ag nanoparticles have been characterized. Mie theory and the Discrete Dipole Approximation method (DDA) have been used to model and interpret the optical properties of the released Ag nanoparticles.  相似文献   

20.
近十几年来, 纳米科学的发展极大地推动了纳米材料在生物医用领域的应用. 聚合物纳米粒子由于其独特的性能在药物传递、医学成像等医用领域备受关注. 其中, 刺激响应型聚合物纳米粒子是一类可以在外界信号刺激下(包括pH、温度、磁场、光等)发生结构、形状、性能改变的纳米粒子. 利用这种刺激响应性可调节纳米粒子的某种宏观行为, 故而刺激响应型聚合物纳米粒子也被称为智能纳米粒子. 因为其特有的“智能性”, 刺激响应型聚合物纳米粒子的研究已成为当前生物材料领域的研究热点. 本文综述了几类重要的生物医用刺激响应型聚合物纳米粒子, 侧重介绍双重及多重刺激响应型聚合物纳米粒子的制备及其生物医学应用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号