首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photodissociation studies using ion imaging are reported, measuring the coherence of the polarization of the S((1)D(2)) fragment from the photolysis of single-quantum state-selected carbonyl sulfide (OCS) at 223 and 230 nm. A hexapole state-selector focuses a molecular beam of OCS parent molecules in the ground state (nu2=0mid R:JM=10) or in the first excited bending state (nu2=1mid R:JlM=111). At 230 nm photolysis the Im[a1 (1)(parallel, perpendicular)] moment for the fast S(1D2) channel increases by about 50% when the initial OCS parent state changes from the vibrationless ground state to the first excited bending state. No dependence on the initial bending state is found for photolysis at 223 nm. We observe separate rings in the slow channel of the velocity distribution of S(1D2) correlating to single CO(J) rotational states. The additional available energy for photolysis at 223 nm is found to be channeled mostly into the CO(J) rotational motion. An improved value for the OC-S bond energy D0=4.292 eV is reported.  相似文献   

2.
In this paper we report slice imaging polarization experiments on the state-to-state photodissociation at 42,594 cm(-1) of spatially oriented OCS(v(2) = 1|JlM = 111) → CO(J) + S((1)D(2)). Slice images were measured of the three-dimensional recoil distribution of the S((1)D(2)) photofragment for different polarization geometries of the photolysis and probe laser. The high resolution slice images show well separated velocity rings in the S((1)D(2)) velocity distribution. The velocity rings of the S((1)D(2)) photofragment correlate with individual rotational states of the CO(J) cofragment in the J(CO) = 57-65 region. The angular distribution of the S((1)D(2)) velocity rings are extracted and analyzed using two different polarization models. The first model assumes the nonaxial dynamics evolves after excitation to a single potential energy surface of an oriented OCS(v(2) = 1|JlM = 111) molecule. The second model assumes the excitation is to two potential energy surfaces, and the OCS molecule is randomly oriented. In the high J region (J(CO) = 62-65) it appears that both models fit the polarization very well, in the region J(CO) = 57-61 both models seem to fit the data less well. From the molecular frame alignment moments the m-state distribution of S((1)D(2)) is calculated as a function of the CO(J) channel. A comparison is made with the theoretical m-state distribution calculated from the long-range electrostatic dipole-dipole plus quadrupole interaction model. The S((1)D(2)) photofragment velocity distribution shows a very pronounced strong peak for S((1)D(2)) fragments born in coincidence with CO(J = 61).  相似文献   

3.
Slice imaging experiments are reported for the quantum state-to-state photodissociation dynamics of OCS. Both one-laser and two-laser experiments are presented detecting CO(J) or S((1)D(2)) photofragments from the dissociation of hexapole state-selected OCS(v(2) = 0,1,2 / J = 1,2) molecules. We present data using our recently developed large frame CCD centroiding detector and have implemented a new high speed MCP high voltage pulser with an effective slice width of only 6 ns. Slice images are presented for quantum state-to-state photolysis, near 230 nm, of vibrationally excited OCS(v(2) = 0,1,2). Two-laser pump-probe experiments detecting CO(J = 63 or 64) show a dramatic change in the beta parameter for the same final state of CO(J) when the photolysis energy is reduced by about 1000 cm(-1). We attribute the observed change from large positive to large negative beta to a large increase of the molecular frame deflection angle at very slow recoil velocity, due to a breakdown of the axial recoil. Two-laser experiments on the S((1)D(2)) fragment reveal single well-separated rings in the slice images correlating with individual CO(J) states. Strong polarization effects of the probe laser are observed, both in the angular distribution of the intensity of single S((1)D(2)) rings and in the resolution of the radial velocity distribution. It is shown how the broadening of the velocity distribution can be reduced by a directed ejection of the electron in the ionization process perpendicular to the slice imaging plane. The dissociation energy of OCS(v(2) = 0, J = 0) --> CO(J = 0) + S((1)D(2)) is determined with high accuracy D(0) = (34 608 +/- 24) cm(-1).  相似文献   

4.
在230nm激光激发下,氧硫化碳(OCS)分子迅速解离生成振动基态但高转动激发的CO(X~1∑_g~+,v=0,J=42-69)碎片,并通过共振增强多光子电离技术实现其离子化。通过检测处于J=56-69转动激发态CO碎片的离子速度聚焦影像,我们获得了各转动态CO碎片的速度分布和空间角度分布,其中包含了S(1D)+CO的单重态和S(~3P_J)+CO三重态解离通道的贡献。不同的转动态CO碎片对应三重态产物通道的量子产率略有不同,经加权平均我们得到230 nm附近光解OCS分子中S(3P)解离通道的量子产率为4.16%。结合高精度量化计算的OCS分子势能面和吸收截面的信息,我们获得了OCS光解的三重态解离机理,即基态OCS(X~1A')分子吸收一个光子激发到弯曲的A~1A'态之后,通过内转换跃迁回弯曲构型的基电子态,随后在C-S键断裂过程中与2~3A"(c~3A")态强烈耦合并沿后者势能面绝热解离。  相似文献   

5.
The dissociation of OCS has been investigated subsequent to excitation at 248 nm. Speed distributions, speed dependent translational anisotropy parameters, angular momentum alignment, and orientation are reported for the channel leading to S((1)D(2)). In agreement with previous experiments, two product speed regimes have been identified, correlating with differing degrees of rotational excitation in the CO coproducts. The velocity dependence of the translational anisotropy is also shown to be in agreement with previous work. However, contrary to previous interpretations, the speed dependence is shown to primarily reflect the effects of nonaxial recoil and to be consistent with predominant excitation to the 2 (1)A(') electronic state. It is proposed that the associated electronic transition moment is polarized in the molecular plane, at an angle greater than approximately 60 degrees to the initial linear OCS axis. The atomic angular momentum polarization data are interpreted in terms of a simple long-range interaction model to help identify likely surfaces populated during dissociation. Although the model neglects coherence between surfaces, the polarization data are shown to be consistent with the proposed dissociation mechanisms for the two product speed regimes. Large values for the low and high rank in-plane orientation parameters are reported. These are believed to be the first example of a polyatomic system where these effects are found to be of the same order of magnitude as the angular momentum alignment.  相似文献   

6.
The photodissociation dynamics of iodocyclohexane has been studied using velocity map imaging following excitation at many wavelengths within its A-band (230 ≤ λ ≤ 305 nm). This molecule exists in two conformations (axial and equatorial), and one aim of the present experiment was to explore the extent to which conformer-specific fragmentation dynamics could be distinguished. Ground (I) and spin-orbit excited (I?) state iodine atom products were monitored by 2 + 1 resonance enhanced multiphoton ionization, and total kinetic energy release (TKER) spectra and angular distributions derived from analysis of images recorded at all wavelengths studied. TKER spectra obtained at the longer excitation wavelengths show two distinct components, which can be attributed to the two conformers and the different ways in which these partition the excess energy upon C-I bond fission. Companion calculations based on a simple impulsive model suggest that dissociation of the equatorial (axial) conformer preferentially yields vibrationally (rotationally) excited cyclohexyl co-fragments. Both I and I? products are detected at the longest parent absorption wavelength (λ ~ 305 nm), and both sets of products show recoil anisotropy parameters, β > 1, implying prompt dissociation following excitation via a transition whose dipole moment is aligned parallel to the C-I bond. The quantum yield for forming I? products, Φ(I?), has been determined by time resolved infrared diode laser absorption methods to be 0.14 ± 0.02 (at λ = 248 nm) and 0.22 ± 0.05 (at λ = 266 nm). Electronic structure calculations indicate that the bulk of the A-band absorption is associated with transition to the 4A(') state, and that the (majority) I atom products arise via non-adiabatic transfer from the 4A(') potential energy surface (PES) via conical intersection(s) with one or more PESs correlating with ground state products.  相似文献   

7.
Photodissociation dynamics of ketene following excitation at 208.59 and 213.24 nm have been investigated using the velocity map ion-imaging method. Both the angular distribution and translational energy distribution of the CO products at different rotational and vibrational states have been obtained. No significant difference in the translational energy distributions for different CO rotational state products has been observed at both excitation wavelengths. The anisotropy parameter beta is, however, noticeably different for different CO rotational state products at both excitation wavelengths. For lower rotational states of the CO product, beta is smaller than zero, while beta is larger than zero for CO at higher rotational states. The observed rotational dependence of angular anisotropy is interpreted as the dynamical influence of a peculiar conical intersection between the (1)B(1) excited state and (1)A(2) state along the C(S)-I coordinate.  相似文献   

8.
Using hexapole quantum state-selection of OCS (v(2)=0,1,2/JlM) and high-resolution slice imaging of quantum state-selected CO(J), the state-to-state cross section OCS (v(2)=0,1,2/JlM)+hnu-->CO(J)+S((1)D(2)) was measured for bending states up to v(2)=2. The population density of the state-selected OCS (v(2)=0,1,2 /JlM) in the molecular beam was obtained by resonantly enhanced multiphoton ionization of OCS and comparison with room temperature bulk gas. A strong increase of the cross section with increasing bending state is observed for CO(J) in the high J region, J=60-67. Integrating over all J states the authors find sigma(v(2)=0):sigma(v(2)=1):sigma(v(2)=2)=1.0:7.0:15.0. A quantitative comparison is made with the dependence of the transition dipole moment function on the bending angle.  相似文献   

9.
DC slice imaging has been employed to study the photodissociation dynamics of acetone at 230 nm, with detection of the CO photoproduct via the B (v' = 0) (1)Sigma(+) <-- X (v' = 0) (1)Sigma(+) transition. A bimodal translational energy distribution observed in the CO fragments points to two distinct dissociation pathways in the 230 nm photolysis of acetone. One pathway results in substantial translational energy release (E(ave) approximately 0.3 eV) along with rather high rotational excitation (up to J' = 50) of CO, and is attributed to the thoroughly investigated stepwise mechanism of bond cleavage in acetone. The other dissociation pathway leads to rotationally cold CO (J' = 0-20) with very little energy partitioned into translation (E(ave) approximately 0.04 eV) and in this way it is dynamically similar to the recently reported roaming mechanism found in formaldehyde and acetaldehyde dissociation. We ascribe the second dissociation pathway to an analogous roaming dissociation mechanism taking place on the ground electronic state following internal conversion. For acetone, this would imply highly vibrationally excited ethane as a coproduct of rotationally cold CO, with the ethane formed above the threshold for secondary decomposition. We estimate that about 15% of the total CO fragments are produced through the roaming pathway. Rotational populations were obtained using a new Doppler-free method that simply relies on externally masking the phosphor screen under velocity map conditions in such a way that only the products with no velocity component along the laser propagation direction are detected.  相似文献   

10.
The technique of resonance enhanced multiphoton ionization (REMPI) has been used in conjunction with time-of-flight mass spectrometry (TOFMS), to investigate the dynamics of ozone photolysis in the long wavelength region of the Hartley band (301-311 nm). Specifically, both the translational anisotropy and the rotational angular momentum orientation of the O(2) (a (1)Delta(g); nu=0, J=16-20) fragments have been measured as a function of photolysis wavelength. Within this region, the thermodynamic thresholds for the formation of these products in combination with O ((1)D(2)) are approached and passed, and consequently these studies have allowed an investigation into the effects on the dynamics of slowing fragment recoil velocities and the increasing importance of vibrationally mediated photolysis. The determined beta parameters for all the J states probed follow a similar trend, decreasing from a value typical for the initial (1)B(2)<--(1)A(1) excitation responsible for the Hartley band [for example, beta=1.40+/-0.12 for the O(2) (a (1)Delta(g); J=18) fragment], to a much lower value beyond the thermodynamic threshold for the fragment's production (for example, beta=0.63+/-0.19 for the J=18 fragment following photolysis at 311 nm). This trend, similar to that observed when probing the atomic fragment in a previous set of experiments, [Horrocks et al., J. Chem. Phys. 125, 133313 (2006); Denzer et al., Phys. Chem. Chem. Phys. 16, 1954 (2006)] is consistent with the photodissociation of vibrationally excited ozone molecules beyond the threshold wavelengths and we estimate approximately 1/3 of this to be from excitation in the nu(3) asymmetric stretching mode. These observations are substantiated by the values of the beta(0) (2)(2,1) orientation moment measured, which for photolysis at 301 nm are negative, indicating that a bond opening mechanism provides the key torque for the departing O(2) fragment. The orientation moment becomes positive again for photolysis beyond threshold, however, as the increasing impulsive dissociation again begins to dominate the nature of the rotation of the departing molecular fragment. In addition, a (2+2) REMPI scheme has been utilized to probe the O(2) (a (1)Delta(g)) "low" J fragments, where the majority of the population resides following photolysis within this region. The REMPI-TOFMS technique has been used to confirm the rotational character of a spectral feature through examination of the signal line shapes obtained using different experimental geometries. The dynamical information subsequently obtained, probing the "low" J O(2) (a (1)Delta(g)) fragments on these rotational transitions, has unified previous translational anisotropy results obtained by detecting the O ((1)D(2)) atomic fragment with data for the O(2) (a (1)Delta(g); J=16-20) fragments.  相似文献   

11.
Far-infrared (FIR) and mid-infrared (MIR) profiles of D2O infinitely dilute in supercritical CO2 have been studied using molecular-dynamics simulations. For this purpose, we have proposed an intermolecular potential model taking implicitly into account electron donor-acceptor (EDA) interactions between water and CO2 evaluated from ab initio calculations of the intermolecular potential-energy surface (IPS). Interaction-induced dipole mechanisms have been also taken into account in addition to the water permanent dipole to evaluate the simulated FIR profiles of water and CO2 polarizable molecules. They were found to play a minor role in the genesis of the FIR profiles of water/CO2 under supercritical conditions. The analysis of the reorientational dynamics of D2O shows that the rotational dynamics of water is weakly anisotropic due to the EDA interactions which affect more specifically the reorientational motions of the C2 symmetry axis of solute. These results have been used to assess the contribution of the vibrational relaxation in the experimental mid-infrared profiles associated with the nu1 symmetric and nu3 antisymmetric stretching and nu2 bending modes of D2O. It was found that the rotational dynamics mainly contribute to the broadening of the infrared (IR) profiles. Nevertheless, the vibrational processes play a role in the frequency shifts of the band centers and the relative intensity enhancements of the nu1 and nu3 modes of D2O. In particular, the EDA interactions between water and CO2 lead to the appearance of a well-defined IR band of the nu1 mode of D2O. Finally, a comparison with another model taking only into account dipole-quadrupole electrostatic interactions between water and CO2 molecules clearly reveals that EDA interactions have to be considered to reproduce both MIR and FIR measurements. From this point of view CO2 can be classified on a hydrophilic solvent scale based upon the solubility criterion as an intermediate solvent between "inert" xenon and carbon tetrachloride.  相似文献   

12.
High resolution kinetic energy release spectra were obtained for C(+) and O(+) from CO multiphoton ionization followed by dissociation of CO(+). The excitation was through the CO (B (1)Sigma(+)) state via resonant two-photon excitation around 230 nm. A total of 5 and 6 photons are found to contribute to the production of carbon and oxygen cations. DC slice and Megapixel ion imaging techniques were used to acquire high quality images. Major features in both O(+) and C(+) spectra are assigned to the dissociation of some specific vibrational levels of CO(+)(X (2)Sigma(+)). The angular distributions of C(+) and O(+) are very distinct and those of various features of C(+) are also different. A dramatic change of the angular distribution of C(+) from dissociation of CO(+)(X (2)Sigma(+), nu(+) = 1) is attributed to an accidental one-photon resonance between CO(+)(X (2)Sigma(+), nu(+) = 1) and CO(+)(B (2)Sigma(+), nu(+) = 0) and explained well by a theoretical model. Both kinetic energy release and angular distributions were used to reveal the underlying dynamics.  相似文献   

13.
The S(1D2)+CO(X1Σ+) product channel from photodissociation of OCS at 217 nm has been measured using the DC slice velocity map imaging (VMI) technique in combination with resonance enhanced multiphoton ionization (REMPI). Two diflerent REMPI intermediate states (1F3 and 1P1) and several pump-probe laser polarization geometries are used to detect the angular momentum polarization of the photofragmented S(1D2). The molecular- frame polarization parameters, as well as the laboratory-frame anisotropy parameters, for individual rotational states of co-fragment CO, are determined using two diflerent full quantum theories. The measured total kinetic energy release spectrum from photodissociation of OCS indicates two dissociation channels, corresponding to the fast and slow recoiling velocities of S(1D2), respectively. The slow channel is concluded to originate from an initial photoexcitation to the A(1A') state, followed by a non-adiabatic transition to the ground state. The fast channel is found to follow a coherent excitation to A(1A') and B(1A') states, where contributions of the two states are almost equal at 217 nm. The determined alignment and anisotropy parameters further indicate that the slow channel follows an incoherent excitation, while the fast channel follows a coherent excitation to A(1A') and B(1A') states with a phase di erence of π/2.  相似文献   

14.
Supercollision relaxation of highly vibrationally excited pyrazine (E(vib) = 37,900 cm(-1)) with D35Cl is investigated using high-resolution transient IR diode laser absorption spectroscopy at 4.4 microm. Highly excited pyrazine is prepared by pulsed UV excitation at 266 nm, followed by rapid radiationless decay to the ground electronic state. The rotational energy distribution of the scattered DCl (v = 0,J) molecules with J = 15-21 is characterized by T(rot) = 755+/-90 K. The relative translational energy increases as a function of rotational quantum number for DCl with T(rel) = 710+/-190 K for J = 15 and T(rel) = 1270+/-240 K for J = 21. The average change in recoil velocity correlates with the change in rotational angular momentum quantum number and highlights the role of angular momentum in energy gain partitioning. The integrated energy-transfer rate for appearance of DCl (v = 0,J = 15-21) is k(2)(int) = 7.1x10(-11) cm3 molecule(-1) s(-1), approximately one-eighth the Lennard-Jones collision rate. The results are compared to earlier energy gain measurements of CO2 and H2O.  相似文献   

15.
The translational anisotropy and the polarization of the electronic angular momentum of the O ((1)D2) fragment produced from the 298 nm photodissociation of ozone have been determined using resonance enhanced multiphoton ionization (REMPI) in conjunction with time-of-flight mass spectrometry (TOFMS). The translational anisotropy parameter beta, which is necessarily averaged over the O2 co-fragment rotational distribution, is measured to be 1.08 +/- 0.04. This is consistent with that expected for the (1)B2 <-- (1)A1 transition within an impulsive model if the tangential velocity associated with the zero point motion of the bend is constricted to opening the bond angle. Molecular frame polarization parameters of rank up to k = 4 have been extracted for the O ((1)D2) fragment and the calculated m(J) populations show a strong preference for the absolute value(m(J)) = 1 states. A small coherence term is also observed, a manifestation of the nuclear geometry of the dissociating molecule and the existence of possible non-adiabatic processes in the exit channel. The orientation associated with the mapping of the photon helicity onto the O ((1)D2) electronic angular momentum distribution was observed to have been quenched. However, the parameter gamma1', which describes the contribution to the orientation from a coherent superposition of a parallel and perpendicular excitation where the photofragment angular momentum lies perpendicular to both the recoil velocity and to the transition dipole moment, was determined to be -0.06.  相似文献   

16.
The photodissociation of acetaldehyde in the molecular channel yielding CO and CH(4) at 248 nm has been studied, probing different rotational states of the CO(nu = 0) fragment by slice ion imaging using a 2+1 REMPI scheme at around 230 nm. From the slice images, clear evidence of the co-existence of two different mechanisms has been obtained. One of the mechanisms is consistent with the well-studied conventional transition state in which CO products appear rotationally excited, and the second is consistent with a roaming mechanism. This roaming mechanism is characterized by a low rotational energy disposal into the CO fragment as well as by a very low kinetic energy release, corresponding to a high internal energy in the CH(4) counter-fragment.  相似文献   

17.
The state-to-state vibrational predissociation (VP) dynamics of the hydrogen-bonded ammonia-acetylene dimer were studied following excitation in the asymmetric CH stretch. Velocity map imaging (VMI) and resonance-enhanced multiphoton ionization (REMPI) were used to determine pair-correlated product energy distributions. Following vibrational excitation of the asymmetric CH stretch fundamental, ammonia fragments were detected by 2 + 1 REMPI via the B1E' <-- X1A1' and C'1A1' <-- X1A1' transitions. The fragments' center-of-mass (c.m.) translational energy distributions were determined from images of selected rotational levels of ammonia with one or two quanta in the symmetric bend (nu2 umbrella mode) and were converted to rotational-state distributions of the acetylene co-fragment. The latter is always generated with one or two quanta of bending excitation. All the distributions could be fit well when using a dimer dissociation energy of D0 = 900 +/- 10 cm(-1). Only channels with maximum translational energy <150 cm(-1) are observed. The rotational excitation in the ammonia fragments is modest and can be fit by temperatures of 150 +/- 50 and 50 +/- 20 K for 1nu2 and 2nu2, respectively. The rotational distributions in the acetylene co-fragment pair-correlated with specific rovibrational states of ammonia appear statistical as well. The vibrational-state distributions, however, show distinct state specificity among channels with low translational energy release. The predominant channel is NH3(1nu2) + C2H2(2nu4 or 1nu4 + 1nu5), where nu4 and nu5 are the trans- and cis-bend vibrations of acetylene, respectively. A second observed channel, with much lower population, is NH3(2nu2) + C2H2(1nu4). No products are generated in which the ammonia is in the vibrational ground state or the asymmetric bend (1nu4) state, nor is acetylene ever generated in the ground vibrational state or with CC stretch excitation. The angular momentum (AM) model of McCaffery and Marsh is used to estimate impact parameters in the internal collisions that give rise to the observed rotational distributions. These calculations show that dissociation takes place from bent geometries, which can also explain the propensity to excite fragment bending levels. The low recoil velocities associated with the observed channels facilitate energy exchange in the exit channel, which results in statistical-like fragment rotational distributions.  相似文献   

18.
白藜芦醇分子的转动惯量和电偶极矩   总被引:4,自引:0,他引:4  
通过分子轨道理论和杂化轨道理论推断出较稳定的白藜芦醇分子是平面型分子,然后根据白藜芦醇分子结构特点计算了该化合物的一种稳定异构体的转动惯量,用矢量合成法计算了其电偶极矩,为微波辅助白藜芦醇萃取理论研究提供转动惯量和电偶极矩的数据.  相似文献   

19.
We report here a measurement of electric dipole moments in highly vibrationally excited HDO molecules. We use photofragment yield detected quantum beat spectroscopy to determine electric field induced splittings of the J=1 rotational levels of HDO excited with 4, 5, and 8 quanta of vibration in the OH stretching mode. The splittings allow us to deduce mua and mub, the projections of dipole moment onto the molecular rotation inertial axes. We compare the measured HDO dipole moment components with the results of quantitative calculations based on Morse oscillator wave functions and an ab initio dipole moment surface. The vibrational dependence of the dipole moment components reflect both structural and electronic changes in HDO upon vibrational excitation; principally the vibrational dependence of the O-H bond length and bond angle, and the resulting change in orientation of the principal inertial coordinate system. The dipole moment data also provide a sensitive test of theoretical dipole moment and potential energy surfaces, particularly for molecular configurations far from equilibrium.  相似文献   

20.
用时间切片速度成像方法研究了氦液滴中羰基硫(COS)分子的光解动力学. 从共振增强(2+1)电离的CO光谱中发现在氦液滴环境中解离产物CO的转动冷却比振动冷却更有效.利用速度成像采集到的CO (v=0)和CO (v=1)的影像在角分布上都呈现出各向同性的特点. 产物平动能分布的结果表明尽管大部分的平动能都被超流体环境所弛豫, 但振动激发态产物CO (v=1) 的平均平动能比振动基态产物CO (v=0) 的平均平动能高.对羰基硫分子在氦液滴中的光解动力学机理进行了讨论.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号