首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
进行了带尾板的常规直叶片、正弯曲叶片、反弯曲叶片组成的三种矩型压气机叶栅在低速风洞上的实验研究,测量了叶栅出口流场,分析了零冲角下尾板对叶栅出口能量损失分布情况和二次流速度矢量的影响。结果表明尾板对压气机叶栅,尤其是弯曲叶片压气机叶栅出口流场有很大的影响,反弯曲叶栅的总损失最大。  相似文献   

2.
通过对典型平面叶栅风洞试验段的数值模拟研究了不同来流攻角和不同来流马赫数下某高负荷扩压叶栅进口周向流场的均匀性,分析了影响叶栅进口流场均匀性的主要原因,研究了改变叶栅上壁面形状对于叶栅进口均匀性的改善效果.数值结果表明:向上游倾斜的扩压平面叶栅固有结构决定了栅前周向流场的不均匀分布;随着来流攻角增大,叶栅上侧壁的通道堵塞程度增大,导致栅前速度场和方向场的不均匀性增大,来流攻角和设定值的最大偏差超过5°;通过减小叶栅上侧壁的弯曲程度可以有效提升栅前流场的均匀程度和范围,使来流攻角和设定值的最大偏差减小至2°.  相似文献   

3.
本文在分析J.D.Denton格式的基础上,采用了R.W.MacCormack时间分裂有限体积法来计算跨音速叶栅流场,使计算与实验结果更加吻合.介绍了使用当地容许时间步长和加密网格法来加速计算收敛的效果.分析了几种人工粘性方法.对以滞止焓沿流线不变的关系代替能量方程时,流场中信息的传播规律进行了讨论.  相似文献   

4.
叶顶间隙对环形叶栅三维粘性流场影响的数值分析   总被引:1,自引:0,他引:1  
1前言考虑叶顶间隙影响的三维叶栅粘性流场特性的数值模拟是当今比较流行的研究课题。顶部泄漏流动的研究对更准确分析、设计三维叶栅具有重要意义。近年来,国内外的学者使用了多种不同的数值方法及实验方法对叶顶间隙流进行研究。然而,以往的计算往往局限于直列叶栅,...  相似文献   

5.
压气机叶栅流场和气动性能的无粘流-边界层迭代计算   总被引:3,自引:0,他引:3  
本文给出一种计算压气机叶栅流场和气动性能的无粘流-边界层迭代方法.这种方法能够计算叶片后缘附近有紊流边界层分离的流动,考虑了尾迹对主流的位移效应.对一个高亚音速压气机叶栅的最小损失工况,计算得到的叶片型面M数分布、叶栅出口气流角、总压损失系数和试验值符合良好.  相似文献   

6.
压气机叶栅壁面拓扑和二次流结构分析   总被引:6,自引:2,他引:6  
本文从涡动力学原理出发,根据实验测量和流场显示结果,对压气机平面叶机的壁面拓扑和叶栅二次流结构进行了研究.由叶栅壁面拓扑分析和二次流结构可知,叶栅的通道涡较强,出口集中脱落涡和角区分离泡的存在,造成了叶栅两端区较高的二次流损失,并且随叶栅来流冲角的提高,旋涡出现破裂,二次流损失进一步提高.  相似文献   

7.
涡轮叶栅二次流损失的实验研究   总被引:2,自引:0,他引:2  
为了研究涡轮叶栅内部二次流的流型及损失,在平面叶栅风洞上对叶栅流道内部及出口平面上用微型四孔测针进行了详尽的测量,配之以叶型和端壁表面的静压实测值及二维等熵流场计算,得到了二次流的流型。作者还根据多次试验结果,拟出了二次损失的物理模型和预估方法。  相似文献   

8.
根据吴仲华提出的基本方程,采用特征线法,对任意迴转面叶栅超声速进口流场的计算编制了计算机程序.计算中特征线方程中的系数是采用特征线两端的平均值,因而需要进行迭代.为了提高计算精度,并提出了一种最近三点二元插值法.叶栅前缘脱体激波的形状和位置是采用Moeckel提出的近似方法确定的.为了满足叶栅流动周期性条件,在计算中对叶栅各个通道进行逐个计算,直到相邻通道中流动情况相同为止.根据守恒条件,确定了无限远来流状态.最后讨论了根据这些计算确定唯一进气角的方法,并给出了计算实例.  相似文献   

9.
一种典型透平静叶型叶片正弯曲作用的实验研究   总被引:2,自引:0,他引:2  
本文报告了一种典型透平静叶型叶片正弯曲作用的实验研究结果。通过采用微型5孔探针测量了常规直叶栅和端部周向倾斜角分别为10°、 20°、 30°的正弯曲叶片叶栅的出口流场。定量分析了叶片正弯曲对叶栅出口二次流动能系数及其分布的影响,采用两种损失计算方法探讨了叶片正弯曲对叶栅出口二次流损失的影响,并讨论了不同弯曲角下的叶栅出口气流角变化。  相似文献   

10.
鼓包前缘叶片具有特殊型式的前缘。本文对所选的初始叶型进行鼓包前缘造型,采用三维CFD数值模拟方法,探究鼓包前缘叶片对环形叶栅气动性能的影响,并初步探寻鼓包前缘叶片对流场的影响机理及规律。计算结果表明:在大攻角的情况下,鼓包前缘叶片可以明显改善环形叶栅的流场结构,减小叶栅分离区范围,可使总压损失系数减小约15%。环形叶栅势流区近S1流面的叶栅损失减小约35%。说明鼓包前缘叶片可以显著提高环形叶栅的气动性能。  相似文献   

11.
吸附式叶栅代替串联叶栅气动可行性探索   总被引:1,自引:0,他引:1  
本文首先以ONERA串列叶栅为研究对象,利用数值模拟的方法对串列叶栅特性及其内部流动进行了分析,在此基础上,设计了与串列叶栅具有同等性能的单列吸附式叶栅,并在设计工况和非设计工况下对改型后的单列吸附式叶栅特性及其内部流场进行了详细分析.结果表明:在相同来流马赫数、出口条件和扩散因子的情况下,单列吸附式叶栅的性能优于串列叶栅,在高负荷压气机设计中用吸附式单列叶栅代替串列叶栅的做法是可行的.  相似文献   

12.
将通过转动叶栅的定常的相对流动和通过静止叶栅的定常的绝对流动相连接,作为统一流场求解.这样在实际的压气机和透平的计算中与S,配合,可以组成多排叶片的同时统一计算,得出多排叶片的准三元和全三元分析计算与设计. 在计算中,采用了广义的Kutta-Jukowsky条件.对最后一排叶片的出气角,中间叶栅的流函数值进行调整.实际计算表明,这种调整是敏感和有效的.计算结果表明:相对于不定常计算,计算比较简单,可供工程使用.  相似文献   

13.
一、前言 回收工业低温(t<150℃)余热发电或作其它动力,能收到良好的节能效果。一般采用低沸点工质,用向心透平作膨胀机较为合宜。向心透平设计中,大多沿用轴流透平的叶栅资料,经保角变换而得.向心环形叶栅资料很少,有待进一步开拓。本文用时间相关法编程对向心环形叶栅作流场计算,用附面层原理计算叶栅叶型损失,并作了二套叶栅的吹风试验,结果符合较好,提供了向心环形叶栅的一种计算方法。  相似文献   

14.
叶片倾斜和弯曲对扩压叶栅出口流场的影响   总被引:4,自引:0,他引:4  
本文对具有常规直叶片、周向正倾斜250叶片和正弯曲叶片组成的三种压气机平面叶栅在平面叶栅低速风洞上进行了实验研究,详细测量了零冲角下三种叶栅的出口流场,通过实验结果的分析比较,并与流场显示结果及叶片表面静压测量结果相结合,讨论了叶片倾斜和弯曲对扩压叶栅出口流场的改善作用。  相似文献   

15.
一、前言 在一些跨音速叶栅绕流计算中,为避免局部网格畸变而带来严重的数值偏差,往往在叶型前缘附加尖劈。这样,计算将无法给出前缘附近及头部壁面上的气流参数。为了获得这些数据,一种实用而有效的方法是,在全场绕流计算的基础上,再进行前缘局部流场分析。本文探讨了这类流动问题的Euler方程数值解法。  相似文献   

16.
不同冲角下弯曲扩压叶栅出口流场的实验研究   总被引:4,自引:0,他引:4  
本文在不同冲角下对直叶片、正倾斜叶片、正弯曲叶片和S型叶片组成的四种平面扩压时栅的出口流场进行了详细的实验研究。通过与常规直叶栅的对比,分析了正倾斜叶栅降低根区二次流损失的原因,阐述了正弯曲叶栅在正冲角下改善叶栅两端区流动状况,降低能量损失的机理和S型叶栅降低根区损失、总损失系数对冲角变化不敏感的原因。结果表明,扩压叶栅中采用正弯曲叶片在一定条件下是可行的。  相似文献   

17.
本文发展了一种S_1流面的H型和C型双重网格计算方法,即首先采用H型网格进行全流场计算,再在叶片前缘附近采用局部C型网格进行加密计算,在生成C型网格时采用了一种组合二次曲线拟合方法以便适用于各种压气机及透平叶型.文中给出的算例表明,本方法是提高S_1流面亚声速绕流计算精度和预测叶栅变工况性能的有效手段。  相似文献   

18.
振动叶栅非定常流场的时间推进计算方法   总被引:4,自引:0,他引:4  
本文利用振动网格时间推进法计算振动叶栅的稳态非定常流场.为了缩短计算时间,先用时间推进计算方法算出定常流场. 然后令计算网格随叶栅振动而振动. 时间推进计算到流场参数随时间作周期性变化,振幅、相位稳定为止.给出了三个算例,其中一个与相近叶片的实验值进行了比较,证明这种算法是有效的.  相似文献   

19.
汽轮机次、末两级弯扭静叶的工程设计与实验研究   总被引:2,自引:0,他引:2  
本文的主要目的是讨论弯扭叶片在大功率汽轮机低压缸末级和次东级的工程应用问题。具有弯扭叶片的通流设计方法采用基于求解欧拉方程的S2流面正问题计算,静叶栅的实验是在环形叶栅实验风洞上进行的,通过对计算结果和实验结果的分析,本文讨论了弯扭叶片在次、末两级中对改善流场的作用。  相似文献   

20.
本文是对多网格法应用于求解Euler方程的探讨,文中以MacCormack显式两步差分格式为基础,提出了一种简单的求解积分型Euler方程的多网格算法,阐述了这种方法的基本思路,研究了稳定条件和一种新的人工粘性形式.文中还进行了几种跨音速涡轮叶栅流场的计算,用以说明多网格法在缩短计算时间上的效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号