首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The simulated moving bed (SMB) technology, first conceived for large bulk-scale separations in the petrochemical industry, has found increasingly new applications in the pharmaceutical industry. Among these, the separation of fine chemicals has been the subject of considerable study and research. This work presents the modeling, simulation and design of the operation of a SMB plant in order to separate a binary chiral mixture. The usual assumption of instantaneous equilibrium at the solid-fluid interface is questioned and a first-order kinetics of adsorption is taken into account. The cases of linear, Langmuir and modified Langmuir equilibria are studied. The equivalent true moving bed (TMB) model was used assuming axial dispersion for the fluid flow and plug flow for the solid-phase flow. Intraparticle diffusion was described by a linear driving force (LDF) approximation. Simulation results indicate that, under certain conditions, equilibrium is not actually reached at the adsorbent surface. This leads to different unit performances, in terms of product purities and recoveries, as compared to those predicted assuming instantaneous equilibrium. Moreover, SMB units may be improperly designed by the usual methods (flow-rate ratio separation regions) if non-equilibrium effects are overlooked.  相似文献   

2.
In the first part of this work adsorption isotherm parameters were acquired to describe the migration of recombinant streptokinase in Butyl Sepharose columns at different salt concentrations. Based on these results, a simulated moving bed (SMB) chromatographic process was designed and realised, which exploits a two-step salt gradient and allows the continuous separation of streptokinase from contaminants present in a clarified Escherichia coli cell lysate solution. This second part describes the design of the three-zone open-loop gradient SMB process applying both equilibrium theory and an equilibrium stage model and presents results of a series of experiments aiming to obtain pure streptokinase. Moreover, the potential of the SMB process and the design approach are evaluated.  相似文献   

3.
The intermittent simulated moving bed (I-SMB) process is a modification of the conventional SMB process that has been recently analyzed theoretically [1]. Here, we present a comparative analysis of the two processes, each operated in a six column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration. Experiments are carried out on a properly modified laboratory unit to separate racemic mixtures of the enantiomers of Tröger’s base in ethanol on ChiralPak AD at a total feed concentration of 1 g/L. Simulations are carried out for the same system using the equilibrium dispersive model and a bi-Langmuir isotherm, whose parameters have been preliminarily estimated from pulse and breakthrough experiments. Experiments and simulations are fully consistent and demonstrate that the four-column I-SMB process (but not the four-column SMB process) can separate the two enantiomers at very high purity and achieve a productivity twice as large as that of the six-column I-SMB and conventional SMB processes with the same solvent consumption.  相似文献   

4.
The combination of two techniques, simulated moving bed (SMB) and supercritical fluid chromatography (SFC), leads to an apparatus with unique features. Besides the known advantages of the SMB process, like reduced solvent consumption and its continuity, the use of supercritical carbon dioxide as the mobile phase offers an easy product recovery by depressurizing the supercritical fluid. Details of a SMB-SFC plant are presented for the first time. Due to the large number of process parameters a simulation of the SMB process is necessary to achieve optimal operating conditions. The most important thermodynamic information for a SMB process is the adsorption isotherms. Therefore, isotherms for two phytol isomers are measured and correlated. A fast dynamic model for the simulation of SMB is used to calculate the region of complete separation taking different column configurations and the compressibility of the mobile phase into account.  相似文献   

5.
This paper presents an analysis of a hybrid process consisting of simulated moving bed (SMB) chromatography and crystallization and studies its performance for the separation of the Tr?ger's base enantiomers. The SMB is simulated using a detailed model including column efficiency, thus, implying a proper evaluation of the effect of column size on column efficiency and separation performance. The crystallization operations are accounted for through material balances, assuming equilibrium between enantiopure crystals and mother liquor. A genetic algorithm is used to optimize the combined process, using proper definitions of objective functions. Multi-objective optimization of this hybrid process for productivity and evaporation cost in terms of operating parameters, column length, and SMB feed concentration shows an optimum SMB purity value as a trade off between increased SMB performance and recycle of the mother liquor.  相似文献   

6.
In the absence of a suitable controller, currently simulated moving beds (SMBs) are operated suboptimally to cope with system uncertainties and to guarantee robustness of operation. Recently, we have developed a 'cycle to cycle' optimizing controller that not only makes use of minimal system information, i.e. only the Henry constants and average bed voidage, but also optimizes the process performance and taps the full economic potential of the SMB technology. The experimental implementation of the 'cycle to cycle' optimizing controller had been carried out for achiral separation. For chiral separation however, application of any online controller has not been possible because an appropriate online monitoring system has not been available. This work reports and discusses the first experimental implementation of the 'cycle to cycle' optimizing control for chiral separations. A mixture of guaifenesin enantiomers is separated on Chiralcel OD columns with ethanol as mobile phase in a eight-column four sections laboratory SMB unit. The results show that the controller, although using minimal information about the retention of the two enantiomers, is able to meet product and process specifications, can optimize the process performance, and is capable of rejecting disturbances that may occur during the operation of the SMB plant.  相似文献   

7.
The volume of surrounding equipments (pipe transfer lines and valves) in the simulated moving bed (SMB) unit, which is called the dead volume, is modeled as bed-head, bed-tail and bed-line. Since the dead volume can be significant especially in industrial-scale SMB units, the consideration of dead volume has been required for high performance operation. In this study, a simple and unified approach based on the method of characteristics (MOC), called the extended node model, is established to solve fluid concentration dynamics within dead volumes. The computational efficiency of the approach is evaluated for three case studies of a standard four-zone SMB process with a linear adsorption equilibrium model. Insertion of one zone to flush the fluid trapped in extract bed-line into the standard four-zone SMB improves substantially purity, while recovery is kept constant.  相似文献   

8.
A new experimental set-up and a new simulated moving bed (SMB) operation are presented in this work. A desktop SMB unit developed as a modification of the commercial AKTA explorer working platform has been utilized for the separation of different mixtures of nucleosides. Both two fraction and three fraction SMB separations have been carried out, the latter made possible by the adoption of a new SMB configuration and operating mode (three fraction SMB, 3F-SMB, operation). Experiments demonstrate the feasibility of the 3F-SMB operation, and confirm the trends predicted based on considerations about retention of the components to be separated along the unit.  相似文献   

9.
Summary The four stereoisomers of nadolol were successfully separated into three groups (SRS)-nadolol and (SSR)-nadolol, (RRS)-nadolol and (RSR)-nadolol using HPLC. The adsorption equilibrium coefficients, mass transfer coefficients of the three groups and the bed voidage were experimentally determined. The computational fluid dynamics (CFD) simulation of the separation was carried out using FEMLAB, which is application software from MATLAB. The simulation visualized the processes of dispersion and separation occurring inside the column. The curvature of the concentration profiles within the column were observed using the simulation. The simulated chromatogram correctly predicted the peak behavior of the eluted compounds except dispersion was overestimated, which is due to the limitation of the software used.  相似文献   

10.
The separation of dilute binary mixtures of proteins by salt aided ion-exchange simulated moving bed (SMB) chromatography is optimized with respect to throughput, desorbent consumption and salt consumption. The optimal flow-rate ratios are analytically determined via an adopted "triangle theory". Azeotropic phenomena are included in this procedure. The salt concentrations in the feed and recycled liquid are subsequently determined by numerical optimization. The azeotropic separation of bovine serum albumin and a yeast protein is used to illustrate the procedure. Gradient operation of the SMB is generally preferred over isocratic operation. A feed of azeotropic salt concentration can only be separated in a gradient SMB. Desorbent and salt consumption are always lower in gradient than in isocratic SMB chromatography.  相似文献   

11.
陈韬  陈贤铬  徐俊烨  范军  俞英  章伟光 《色谱》2016,34(1):68-73
模拟移动床(SMB)色谱作为一种精确、高效的制备色谱技术引起研究者的极大关注。本文以EnantioPak OD填料为手性固定相,正己烷-乙醇(70 : 30, v/v)为流动相,在四区模拟移动床上手性拆分甲霜灵外消旋体。采用旋光检测器研究甲霜灵异构体在手性柱上的洗脱顺序;探讨进样浓度、进样流速、各区流速和切换时间等条件对手性分离甲霜灵外消旋体的影响,并与制备色谱进行比较。结果表明:S-(+)-甲霜灵先于R-(-)-甲霜灵被流动相洗脱,R-(-)-甲霜灵在色谱柱上的保留强于S-(+)-甲霜灵;在线性和非线性条件下,模拟移动床都能很好地拆分甲霜灵外消旋体,在优化SMB工艺条件下,S-(+)-甲霜灵和R-(-)-甲霜灵的光学纯度都大于99%;在样品质量浓度为15 mg/mL的条件下,模拟移动床色谱分离的样品量显著高于制备色谱,而流动相消耗仅为后者的1/9。这对于发展大规模色谱拆分甲霜灵工艺具有良好的指导意义。  相似文献   

12.
In this study, a systematic numerical procedure for identifying the model parameters of simulated moving bed (SMB) separation processes is developed. The parameters are first estimated by minimizing a weighted least-squares criterion using experimental data from batch experiments, e.g. the time evolution of the concentration of elution peaks. Then, a cross-validation is achieved using data from experiments in SMB operation. At this stage, the importance of a careful modelling of the dead volumes within the SMB process is highlighted. In addition, confidence intervals on the estimated parameters and on the predicted concentration profiles are evaluated.  相似文献   

13.
The design of gradient simulated moving bed (SMB) chromatographic processes requires an appropriate selection of the chromatographic system followed by the determination of adsorption isotherm parameters in the relevant range of mobile phase conditions. The determination of these parameters can be quite difficult for recombinant target proteins present in complex protein mixtures. The first part of this work includes the estimation of adsorption isotherm parameters for streptokinase and a lumped impurity fraction present in an Escherichia coli cell lysate for a hydrophobic interaction chromatography (HIC) matrix. Perturbation experiments were carried out using a Butyl Sepharose matrix with purified recombinant protein on buffer equilibrated columns as well as with crude cell lysate saturated columns. The Henry constants estimated for streptokinase were found to exhibit in a wide range a linear dependence on the salt concentration in the mobile phase. These parameters were applied in subsequent investigations to design a simulated moving bed (SMB) process capable to purify in a continuous manner recombinant streptokinase from the E. coli cell lysate.  相似文献   

14.
A novel modification of simulated moving bed (SMB) technology, referred to as fractionation and feedback SMB (FF-SMB), has been introduced recently. This concept is based on fractionating one or both outlet streams and feeding the off-spec fractions back into the unit alternatingly with the original feed mixture. In this paper, the optimization problem of FF-SMB realizing one outlet fractionation is considered. A mathematical optimization framework based on a detailed process model is presented which allows to evaluate quantitatively the potential of this operating scheme. Detailed optimization studies have been carried out for a difficult separation characterized by small selectivity and low column efficiency. The results reveal that the proposed fractionation and feedback regime can be significantly superior to the classical SMB chromatography, in terms of both feed throughput and desorbent consumption. The effect of the feeding sequence on the performance of FF-SMB is also examined.  相似文献   

15.
One of the modified simulated moving bed (SMB) processes, the intermittent SMB (I-SMB) process, has been recently analyzed theoretically [1] and its superior performance compared to the conventional SMB process has been demonstrated at a rather low total feed concentration through experiments and simulations [2]. This work shows that the I-SMB process outperforms the conventional SMB process also at high feed concentration where the species are clearly subject to a nonlinear adsorption isotherm. In the case of the separation of the Tröger's base's enantiomers in ethanol on ChiralPak AD, the two processes operated in a six-column 1-2-2-1 configuration (one column in sections 1 and 4 and two columns in sections 2 and 3) and in a four-column 1-1-1-1 configuration (one column in each section) are compared at high feed concentration through both experiments and simulations. Even under nonlinear conditions the four column I-SMB process can successfully separate the two enantiomers achieving purity levels as high as the two six column processes and exhibiting better productivity.  相似文献   

16.
 L-Lysine was produced by a microbial process utilizing a Corynebacterium glutamicum (ATCC 21799) strain. L-Lysine was purified from the cultivated medium by fixed-bed and simulated moving bed (SMB) chromatography. The separation conditions including pH, eluent concentration and Lys+ and Lys2+ adsorption isotherms were studied in batch adsorption. The column capacity, eluent flow rate and eluent concentration have been studied in fixed-bed chromatography. Maximum purification rate of lysine was obtained as 0.066 g/(g·h) (per gram resin and per hour) at an eluent flow rate of 10 mL/min in fixed-bed chromatography. The results obtained from SMB were 0.11 g/(g·h) for L-lysine purification rate and 96% for L-lysine recovery.  相似文献   

17.
A new continuous chromatographic process (Varicol) has been presented recently. Its basic principle consists, in contrast to the traditional simulated moving bed (SMB) technology, of an asynchronous shift of the inlet/outlet lines in a multi-column system with a recycle loop. Due to the stronger influence of the discrete dynamics on the plant behavior, the design of a Varicol process requires the use of model-based optimization to take advantage of the very high flexibility of this process. The equilibrium theory which has been successfully applied to SMB by many practitioners fails to predict the region of complete separation accurately. In this paper, we present a rigorous model-based optimization framework, which can handle the SMB and the novel Varicol process in a systematic manner. The feasibility of the approach is demonstrated by the separation of a mixture of propranolol isomers which exhibits a highly non-linear multi-component adsorption behavior. Experimental results are presented and discussed.  相似文献   

18.
Continuous countercurrent or simulated moving bed (SMB) chromatography is a well-established separation technology. Conventional processes are based on four zones which fulfil distinct functions in order to split a feed into two fractions. Frequently there is an interest in isolating a target component out of a feed mixture containing more than two components. Modifications of the classical SMB process are required to solve this task. In the last years several concepts exploiting more than four zones have been suggested. To analyse these concepts the equilibrium theory has been frequently applied, neglecting all kinetic effects. It is the purpose of this paper to apply an equilibrium stage model in order to describe the performance of a combination of two or three 4-zone true moving bed units which are connected in series or integrated into 8- or 12-zone true moving bed units. The performance of such units is evaluated with respect to their potential to continuously separate ternary or quaternary mixtures. The analysis is based on the assumption of linear adsorption isotherms. An important aspect is the introduction of additional purge streams required for a successful operation of integrated 8- and 12-zone units.  相似文献   

19.
One of the conventional processes used for the recovery of citric acid from its fermentation broth is environmentally harmful and cost intensive. In this work an innovative benign process, which comprises simulated moving bed (SMB) technology and use of a tailor-made tertiary poly(4-vinylpyridine) (PVP) resin as a stationary phase is proposed. This paper focuses on a model-based design of the operation conditions for an existing pilot-scale SMB plant. The SMB unit is modeled on the basis of experimentally determined hydrodynamics, thermodynamics and mass transfer characteristics in a single chromatographic column. Three mathematical models are applied and validated for the prediction of the experimentally attained breakthrough and elution profiles of citric acid and the main impurity component (glucose). The transport dispersive model was selected for the SMB simulation and design studies, since it gives a satisfactory prediction of the elution profiles within acceptable computational time. The equivalent true moving bed (TMB) and SMB models give a good prediction of the experimentally attained SMB separation performances, obtained with a real clarified and concentrated fermentation broth as a feed mixture. The SMB separation requirements are set to at least 99.8% citric acid purity and 90% citric acid recovery in the extract stream. The complete regeneration in sections 1 and 4 is unnecessary. Therefore the net flow rates in all four SMB sections have been considered in the unit design. The influences of the operating conditions (the flow rate in each section, switching time and unit configuration) on the SMB performances were investigated systematically. The resulting SMB design provides 99.8% citric acid purity and 97.2% citric acid recovery in the extract. In addition the citric acid concentration in the extract is a half of its concentration in the pretreated fermentation broth (feed).  相似文献   

20.
Configurations of a four-column simulated moving bed chromatographic process are investigated by multi-objective optimization. Various existing column configurations are compared through a multi-objective optimization problem. Furthermore, an approach based on an SMB superstructure is applied to find novel configurations which have been found to outperform the standard SMB configuration. An efficient numerical optimization technique is applied to the mathematical model of the SMB process. It has been confirmed that although the optimal configuration highly depends on the purity requirement, the superstructure approach is able to find the most efficient configuration without exploring various existing configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号