首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The excellent optical properties of MXene provide new opportunities for short-pulse lasers. A diode-pumped passively Q-switched laser at 1.3 μm wavelength with MXene Ti_3C_2T_x as saturable absorber was achieved for the first time. The stable passively Q-switched laser has 454 ns pulse width and 162 kHz repetition rate at 4.5 W incident pumped power. The experimental results show that the MXene Ti_3C_2T_x saturable absorber can be used as an optical modulator to generate short pulse lasers in a solid-state laser field.  相似文献   

2.
We demonstrated a 2-μm passively mode-locked nanosecond fiber laser based on a MoS_2 saturable absorber(SA).Owing to the effect of nonlinear absorption in the MoS_2 SA, the pulse width decreased from 64.7 to 13.8 ns with increasing pump power from 1.10 to 1.45 W. The use of a narrow-bandwidth fiber Bragg grating resulted in a central wavelength and 3-dB spectral bandwidth of 2010.16 and 0.15 nm, respectively. Experimental results show that MoS_2 is a promising material for a 2-μm mode-locked fiber laser.  相似文献   

3.
A single output Q-switched Nd:GdVO4 laser with a reflective graphene oxide(GO) saturable absorber was demonstrated. The shortest pulse duration in the Q-switched laser is 115 ns, and the output power ranges from1.23 W at 1.71 MHz to 2.11 W at 2.50 MHz when the pump power rises from 7.40 to 10.90 W with the utilization of GO Langmuir–Blodgett(LB) films based on the convenient and low-cost LB technique. To the best of our knowledge, it is the highest output power in a Q-switched laser with a GO saturable absorber.  相似文献   

4.
We demonstrate a diode-pumped passive Q-switched 946nm Nd: YAG laser with a diffusion-bonded composite laser rod and a co-doped Nd, Cr:YAG as saturable absorber. The average output power of 2.1 W is generated at an incident pump power of 14.3 W. The peak power of the Q-switched pulse is 643 W with 80kHz repetition rate and 40.8 ns pulse width. The slope efficiency and optical conversion efficiency are 17.6% and 14.7%, respectively.  相似文献   

5.
We report, for the first time to our knowledge, a diode-pumped passive Q-switched 946nm Nd:YAG laser by using a GaAs as saturable absorber. The maximum average output power is 1.24 W at an incident pump power of 15 W, corresponding to a slope efficiency of 10%. Laser pulses with pulse duration of 70ns and repetition rate of 330 kHz are generated.  相似文献   

6.
We presented a passively Q-switched(PQS) diode-pumped c-cut Tm, Ho:LuVO_4 laser with a black phosphorus saturable absorber for the first time.Under PQS mode, an average output power of 0.86 W and a peak power of 2.32 W were acquired from the Tm, Ho:LuVO_4 laser with the pump power of 14.55 W, corresponding to a pulse width of 2.89 μs,a pulse repetition rate of 71.84 kHz, and a pulse energy of about 6.70 μJ.  相似文献   

7.
We present a novel kind of pulsed laser named controllable passively Q-switched laser (CPQL). A CPQL of Nd:YV04 with Cr:YAG as saturable absorber was demonstrated and studied as an example of the kind of pulsed lasers. In CPQL, as the actively controlling signal, a diode laser beam was focused onto the saturable absorber in the resonant cavity of the passively Q-switched laser (PQL) and was absorbed by the absorber to realize the active control of the CPQL. The characters of the CPQL output laser pulses, such as generation time, repetition rate, pulse width, peak power and energy per pulse, can be controlled by the operator. The CPQLs possess theadv antages of both passively Q-switched laser and actively Q-switched laser. Because of their compactness, low cost and controllability, the CPQLs will find wide applications in many fields.  相似文献   

8.
We report on the generation of Q-switched and Q-switched mode-locked(QML) pulses in an erbium-doped fiber ring laser by using a polyvinyl alcohol(PVA)-based gold nanorod(GNR) saturable absorber(SA). The PVAbased GNR SA has a modulation depth of ~4.8% and a non-saturable loss of ~26.9% at 1.5 μm. A Q-switched pulse train with a repetition rate varying from 18.70 to 39.85 k Hz and a QML pulse train with an envelope repetition rate tuning from 20.31 to 31.50 k Hz are obtained. Moreover, the lasing wavelengths of the Q-switched pulses can be flexibly tuned by introducing a narrow bandwidth, tunable filter into the laser cavity. The results demonstrate that the GNRs exhibit good optical performance and can find a wide range of applications in the field of laser technology.  相似文献   

9.
We demonstrate a diode pumped Yb:LuVO_4 laser that can be passively Q-switched by a Cr~(4+):YAG saturable absorber having an initial transmission as high as 99.3%.A maximum pulsed output power of 2.35 W is generated at a repetition rate of 285.7 kHz,approaching or very near the intrinsic upper limit imposed by the recovery time of the Cr~(4+):YAG saturable absorber,and the resulting pulse energy,duration and peak power are,respectively,8.2μJ,39.2ns and 0.209kW.  相似文献   

10.
The direct generation of passively Q-switched lasers at a green wavelength has rarely been investigated in the past. In this Letter, we demonstrate a passively Q-switched praseodymium-doped yttrium lithium fluoride green laser at 522 nm using CdTe/CdS quantum dots as a saturable absorber. A maximum average output power of 33.6 m W is achieved with the shortest pulse width of 840 ns. The corresponding pulse energy and peak power reached 0.18 μJ and 0.21 W, respectively. To the best of our knowledge, this is the first demonstration in regard to a quantum dots saturable absorber operating in the green spectral region.  相似文献   

11.
A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4 :YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210μJ and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4 :YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 mW was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4 :YAG.  相似文献   

12.
We demonstrate a passively Q-switched Nd:KLu W laser with a semiconductor sat urable absorber mirror (SESAM) at wavelength 1070 nm. At a pump power of 1.3 W, the pulse width is measured to be about 17ns with repetition rate of lOkHz and with the average output power of 260roW. To our knowledge, this is the first demonstration of Nd:KLuW used for passively Q-switched laser with an SESAM.  相似文献   

13.
A passively Q-switched mode-locked(QML) Tm:Li Lu F4(LLF) laser with a Mo S2 saturable absorber(SA) is demonstrated for the first time, to our best knowledge. For the Q-switching mode, the maximum average output power and Q-switched pulse energy are 583 m W and 41.5 μJ, respectively. When the absorbed power is greater than 7.4 W, the passively QML pulse is formed, corresponding to an 83.3-MHz frequency. The modulation depth in Q-switching envelopes is approximately 50%. Results prove that Mo S2 is a promising SA for Q-switched and QML solid-state lasers.  相似文献   

14.
In this Letter, a single-frequency fiber laser using a molybdenum disulfide(Mo S2) thin film as a saturable absorber is demonstrated. We use a short length of highly Yb-doped fiber as the gain medium and a fiber ferrule with Mo S2 film adhered to it by index matching gel(IMG) that acts as the saturable absorber. The saturable absorber can be used to discriminate and select the single longitudinal modes. The maximum output power of the single-frequency fiber laser is 15.3 m W at a pump power of 130 m W and the slope efficiency is 15.3%. The optical signal-to-noise ratio and the laser linewidths are ~60 d B and 5.89 k Hz, respectively.  相似文献   

15.
Gold nanorods(GNRs) with two different aspect ratios were successfully utilized as saturable absorbers(SAs) in a passively Q-switched neodymium-doped lutetium lithium fluoride(Nd:LLF) laser emitting at 1.34 μm. Based on the GNRs with an aspect ratio of five, a maximum output power of 1.432 W was achieved, and the narrowest pulse width was 328 ns with a repetition rate of 200 kHz. But, in the case of the GNRs with the aspect ratio of eight, a maximum output power of 1.247 W was achieved, and the narrowest pulse width was 271 ns with a repetition rate of 218 kHz. Our experimental results reveal that the aspect ratios of GNRs have different saturable absorption effects at a specific wavelength. In other words, for passively Q-switched lasers at a given wavelength, we are able to select the most suitable GNRs as an SA by changing their aspect ratio.  相似文献   

16.
We report on the continuous-wave(CW) and passive Q-switching performance of a miniature Yb:Y_3Ga_5O_(12)crystal laser end pumped by a 935-nm diode laser. A maximum CW output power of 12.03 W is produced with an optical-to-optical efficiency of 54.4%, while the slope efficiency is 63%. In the passively Q-switched operation achieved with a Cr~(4+):YAG saturable absorber, an average output power of 2.12 W at 1025.2 nm is generated with a slope efficiency of 46% at a pulse repetition rate of 5.0 kHz. The pulse's energy, duration, and peak power are 424 μJ, 2.3 ns, and 184.3 k W, respectively.  相似文献   

17.
As a preferable material in the field of photo-detection and catalysis, the characteristics of FePS_3 in broad wavelength range have been proven by many experimental studies. However, FePS_3 has not been used as a saturable absorber(SA)in fiber lasers yet. We propose and demonstrate the generation of a single wavelength and dual-wavelength based on an Er-doped fiber laser(EDFL) at 1.5 μm by using an innovative FePS_3 saturable absorber for the first time. The result shows that a stable passively Q-switched pulse can be generated, which demonstrates that the new two-dimensional(2D) material FePS_3 served as SA provides a valid method to realize passively Q-switched laser. In addition, we achieve the output of the dual-wavelength pulse by properly rotating the polarization controller. To the best of our knowledge, the dual-wavelength pulse EDFL could be applied in biomedicine, spectroscopy, and sensing research.  相似文献   

18.
We demonstrate a passively Q-switched erbium-doped fiber laser(EDFL)using a copper nanoparticle(CuNP)thin film as the saturable absorber in a ring cavity.A stable Q-switched pulse operation is observed as the CuNP saturable absorber(SA)is introduced in the cavity.The pulse repetition rate of the EDFL is observed to be proportional to the pump power,and is limited to 101.2 kHz by the maximum pump power of 113.7 mW.On the other hand,the pulse width reduces from 10.19 ps to 4.28 ps as the pump power is varied from 26.1 mW to 113.7 mW.The findings suggest that CuNP SA could be useful as a potential saturable absorber for the development of the robust,compact,efficient and low cost Q-switched fiber laser operating at 1.5-μm region.  相似文献   

19.
A passive Q-switched large-mode-area Yb-doped fibre laser is demonstrated using a GaAs wafer as the saturable absorber. A high Yb doping concentration double-clad fibre with a core diameter of 30μm and a numerical aperture of 0.07 is used to increase the laser gain volume, permitting greater energy storage and higher output power than conventional fibres. The maximum average output power is 7.2W at 1080nm wavelength, with the shortest pulse duration of 580ns and the highest peak power of 161W when the laser is pumped with a 25W diode laser operating at 976nm. The repetition rate increases with the pump power linearly and the highest repetition rate of 77kHz is obtained in the experiment.  相似文献   

20.
A diode-pumped passively Q-switched Nd:YLF laser was demonstrated by using saturable absorber of Cr4+:YAG. At the incident power of 7.74 W, pure passively Q-switched laser with per pulse energy of 210 Μj and pulse width of 19.6 ns at repetition rate of 1.78 kHz was obtained by using Cr4+:YAG with initial transmission of 80%. At the incident power of 8.70 W, a Q-switched mode-locking with average output power of 650 Mw was achieved, the overall slop efficiency was 16%, corresponding to the initial transmission of 85% of Cr4+ :YAG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号