共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
在双目立体视觉系统中,立体匹配是关键步骤之一,其精度对后续的研究有着重大影响。Census算法由于具有简单明晰、运行效果好、实时性强等优点,被广泛采用。但Census立体匹配算法存在变换窗口中心点易受外界条件干扰、深度不连续区域匹配精度低等缺点,由此提出了一种新型的基于Census变换及引导滤波器的立体匹配算法。在Census变换阶段通过计算变换窗口周围的像素的平均值,降低了外界干扰的影响,同时在代价聚合阶段引入具有包边特性且计算量不依赖于滤波核大小的引导滤波器作为自适应权重。实验结果表明:所提算法在Middlebury测试平台上平均误匹配误差为6.03%,相较于目前Census立体匹配算法16.2%的平均误匹配率,匹配效果明显提高,且算法效率较高,具有较好的辐射不变性。 相似文献
3.
针对双目水下图像匹配不满足空气中常规极线约束的问题,提出一种基于深度约束的半全局算法以实现水下稠密立体匹配.首先采用深度约束确定匹配过程的深度约束搜索区域.然后,基于深度约束区域将绝对差值和梯度计算推广到二维区域并进行加权融合.在深度约束区域内的搜索过程中,采用胜者为王的策略确定某一视差值下的最佳行差及最佳行差下的匹配代价,并将其作为能量函数的数据项应用于半全局算法中,进行匹配代价的聚合.最后采用抛物线拟合法得到亚像素级的稠密视差图.在水下图片上进行的稠密立体匹配结果表明:相较于其他半全局匹配算法,本文算法在极大提高运行速度的前提下,可以获得良好的水下稠密立体匹配效果. 相似文献
4.
《光学学报》2018,(12)
现有的多尺度立体匹配算法对各尺度的代价函数采用相同权值,而忽略了各尺度层对整个匹配代价的不同影响,增加了误匹配点。针对此问题,提出了自适应权值的跨尺度立体匹配算法框架。采用统一的代价聚合函数框架在不同尺度上进行代价匹配,并提出利用各像素窗口的信息熵作为不同尺度下匹配代价对整个匹配代价的影响因子;同时为了保证不同尺度下同一像素的代价一致性,在代价函数里加入正则化因子。本文算法框架可以应用在利用多尺度进行代价匹配的算法上,并使原有算法的准确率和稳健性得到提高。基于本文算法框架,分别采用不同代价聚合函数在Middlebury数据集上进行测试。为保证测试的公平性,各算法均未进行后续的视差求精步骤,实验表明,本文算法有效地提高了多尺度立体匹配的准确率和稳健性。 相似文献
5.
6.
《光学学报》2020,(9)
提出一种基于引导图像和自适应支持域的局部立体匹配算法。首先对校正后的输入图像进行预处理得到引导图像;在匹配代价计算阶段,提出一种梯度计算方法,结合引导图像和输入图像的梯度信息,分别计算x和y方向的梯度,再与AD(absolute difference)和Census变换融合构建匹配代价计算函数;在代价聚合阶段,使用基于自适应支持域的导向滤波;在视差细化阶段,提出一套基于自适应支持域的多步细化方法,通过该方法得到最终的视差图。实验结果表明,视差细化后全部区域的平均误差和方均根误差平均减少43.7%和38%,非遮挡区域平均减少33.7%和30.9%,所提算法具有较好的鲁棒性并能获得精度较高的视差结果。 相似文献
7.
《光学学报》2017,(11)
基于引导滤波和非下采样方向滤波器,提出了一种多尺度方向引导滤波图像融合方法,该方法兼具边缘保持特性和方向信息提取能力,能够有效提取源图像的有用信息。所提方法对源图像进行多尺度方向引导滤波,得到了包含低频近似部分和强边缘部分的低频分量,而后通过高斯低通滤波将其进行有效分离,分别应用基于卷积稀疏表示和区域能量自适应加权平均的融合规则;对高频细节方向分量应用显著性与引导滤波相结合的融合规则,以保持空间一致性,得到了相应的高频细节融合分量。结果表明,所提方法能更好地提取源图像的目标特征信息,保留丰富的背景信息,客观评价指标优于现有方法,融合结果具有更好的主观视觉效果。 相似文献
8.
提出一种基于背景最佳滤波尺度的红外图像复杂度评价准则来解决传统方法评价背景效果较差的问题. 同时, 这种方法还可以为红外图像滤波提供最佳高通滤波尺度信息, 从而对红外图像进行性能最佳滤波. 首先, 生成高斯仿真目标并与红外图像进行融合, 获得包含仿真目标及真实红外背景的图像. 然后, 在不同高斯滤波尺度下对图像滤波, 并计算滤波后仿真目标的信噪比. 最后, 取滤波后目标信噪比最大时的滤波尺度作为背景最佳滤波尺度, 使用该尺度可评价红外图像的复杂度. 另外, 本文还使用数学模型推导了红外图像最佳滤波尺度, 得出最佳滤波尺度的数学表达式. 大量实验表明: 1) 本文推导的最佳滤波尺度数学表达式与实验曲线吻合. 2) 这种方法在评价红外图像复杂度方面比传统的基于信息熵的方法效果要好很多. 并且这种方法获取的红外背景复杂度为滤波最佳尺度, 可以直接利用这项指标对图像进行最佳滤波从而更好地检测弱小目标. 3) 仿真目标尺度越大, 最佳滤波尺度也会相应增大. 因此, 在评价图像复杂度时, 应使用相同尺度的仿真目标, 不同图像之间才具备可比性. 同时, 最佳滤波尺度与仿真目标的强度无关. 4) 本文算法使用的滤波器宜用高斯及Butterworth高通滤波器实现. 5) 本文提出的方法不仅可以有效分析红外视频的复杂度, 并且可以通过复杂度的变化分析图像内容的突变. 相似文献
9.
多尺度形态算子融合图像滤波技术及滤波质量评价 总被引:1,自引:0,他引:1
针对舰载红外警戒系统的红外和电视图像,提出了一种新的海空背景下受强杂波、噪声污染的图像目标滤波算法和滤波效果的定量评价算子。算法采用多尺度的形态算子对输入的图像并行滤波,大尺度形态算子抑制图像噪声,小尺度形态算子提取目标边缘细节信息。处理后的图像进行基于树状小波帧变换的图像信息融合,融合图像可完备提取不同尺度滤波后的图像信息。针对目标检测跟踪的图像滤波算法的评价,提出了目标与背景的交叉分辨力评价算子及评价准则。仿真实验表明。该滤波算法要优于中值滤波、自适应滤波、小波变换滤波算法,滤波质量的定量评价算法是合理的、有效的。算法适用于舰载红外警戒系统。 相似文献
10.
针对多聚焦图像融合中目标物边缘处产生虚影的问题,提出一种基于引导滤波与改进脉冲耦合神经网络(PCNN)的多聚焦图像融合算法。该算法利用引导滤波器对源图像进行多尺度边缘保持分解,对分解得到的基本图像和细节图像采用不同的引导滤波加权融合策略进行初步融合;将初步融合图作为外部输入激励刺激改进的PCNN模型;根据融合权重图对多幅源图像进行融合,获得最终的融合图像。实验结果表明,与传统融合算法相比,本文方法较好地保留了源图像的边缘、区域边界以及纹理等细节信息,避免了目标物边缘处产生虚影,提高了融合图像的质量。 相似文献
11.
《光学学报》2017,(8)
为了使融合结果突出目标并发掘更多细节,提出了一种基于目标提取与引导滤波增强的红外与可见光图像融合方法。首先对红外图像依据二维Tsallis熵和基于图的视觉显著性模型提取目标区域。然后对可见光与红外图像分别进行非下采样Shearlet变换(NSST),并对所得低频分量进行引导滤波增强。由增强后的红外图像和可见光图像低频分量基于目标提取的融合规则得到融合图像的低频分量,高频分量则根据方向子带信息和取大来确定。最后经NSST逆变换得到融合图像。大量实验结果表明,本文方法在增强融合图像空间细节的同时,有效突出了目标,并且在信息熵、平均梯度等指标上优于基于拉普拉斯金字塔变换、基于小波变换、基于平稳小波变换、基于非下采样Contourlet变换(NSCT)、基于目标提取与NSCT变换等。 相似文献
12.
立体匹配通过寻找同一空间景物在不同视点下投影图像的像素间的一一对应关系, 最终得到该景物的视差图。在对匹配算法作了深入研究的基础上, 提出了一种利用图像分割的基于图割的立体匹配算法。算法把参考图分割成多个区域, 然后用平面公式在一个分割中建立视差。视差模板是从初始视差分割中提取的。每一个分割被分配到精确的视差模板。构建全局能量函数,能量函数的鲁棒最小化是由基于图割的最优化获得的。算法对低纹理区域和接近视差边界区域有很好的匹配效果, 同时, 又解决了传统的基于全局算法中计算量过大, 实时性不好的问题。实验表明, 本算法能满足高精度、高实时性要求。 相似文献
13.
基于多尺度特征的匹配滤波处理 总被引:2,自引:0,他引:2
基于“分类置前检测”的思想,对线性调频信号组成的脉冲串(PTFM)信号及其混响,利用在小波变换的大尺度离散逼近空间上的自相似性和峰度等特征差异,提出了一种基于多尺度特征的匹配滤波算法。湖试数据的处理结果表明,该方法在混响背景下的检测性能优于匹配滤波约10 dB;在多途情况下,该方法相对于无多途情况时的检测性能略有提高,说明该方法对多途的影响具有很好宽容性。 相似文献
14.
图像增强技术可以有效地突出图像中的有用信息,已广泛应用于多个领域.现有的图像增强算法往往无法应对自然图像中复杂的梯度分布,难以准确保持图像中前景与背景的边缘信息.为了改善输出图像的边界过平滑问题,本文提出了一个基于多引导滤波的图像增强算法.首先,设计了一个以滤波核为变量的通用图像优化模型,现有的联合滤波器可视为该模型的解;然后,依据集成学习的思想,将联合滤波器中的单幅引导图像扩展到多幅,以更好地利用引导图中的结构信息进而获得更好的输出结果,并给出了一个多幅引导图的来源途径;最后,对多幅输出图像进行平滑,在图像优化模型中加入正则化项,以确保由多引导滤波得到的不同滤波输出保持一致.实验结果表明,本文算法在抑制图像噪声的同时,可以更好地保留物体的边界信息,从而使图像的信噪比进一步提升. 相似文献
15.
16.
17.
针对高光谱图像中同质异谱现象造成的分类精度较低以及边缘像元在联合空间光谱信息分类时特征易混淆的问题,提出了基于分层引导滤波与最近邻正则化子空间的分类方法.利用主成分分析获得高光谱图像的第一主成分.以第一主成分为引导图像对高光谱图像执行分层引导滤波操作,引导滤波的边缘保护特性,有效阻隔了边缘处类间光谱信息的混淆,并减小了局部区域类内光谱的差异,最后将预处理后的高光谱图像送至最近邻正则化子空间分类器进行分类识别.在Indian Pines,Salinas以及GRSS_DFC_2013高光谱数据集上与现有的方法进行对比实验.结果表明,本文提出的方法在三个数据集上分别取得了98.63%,99.13%与99.42%的总体分类准确率,有着更优的分类精度与可视化效果. 相似文献
18.
19.
为了进一步提高光声重建图像的质量,采用滤波反投影算法进行图像重建。实验所用的光源为YAG激光器,波长为1 064 nm,重复频率为20 Hz,脉宽为7 ns,探测器为针状的PVDF膜水听器,接收面的直径为1mm,得到了4个圆形吸收体和5根头发的光声重建图像。仿真和实验结果表明:通过对信号进行滤波,能很好地抑制噪声信号,明显提高图像的对比度和分辨率。 相似文献
20.
作为图像处理领域的重要分支和研究热点之一, 图像复原方法 的研究始终具有重要理论意义和广泛的应用价值, 图像盲复原一直以来都 是图像复原中比较困难的问题之一. 针对相机与所拍摄景物之间由于相对 位置移动而使所获得图像发生运动模糊的情况, 本文提出了一种基于指导滤波 的图像盲复原算法. 我们首先通过频域迭代算法对点扩散函数 进行估计. 然后, 由于指导滤波具有较好的保持图像边缘的特性, 我们应用基于指导滤波的图像非盲复原算法恢复目标图像. 对以上两步进行反复迭代, 直到获得最终的清晰图像. 为了验证本文所提算法的有效性, 给出了多组对比实验. 实验结果表明, 本文所提算法能够在有效地抑制噪声和振铃 效应的同时, 还能够更好的保持图像的边缘和纹理细节. 因此, 本文算法可以获得更高质量的复原图像. 相似文献