首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 1 毫秒
1.
A novel method for the generation of high-energy ultrashort optical pulses is described and studied theoretically and numerically. Through the combination of parametric amplification and enhancement cavities, this method opens a route to generate few-cycle pulses at unprecedented average power levels through the use of a low-energy, high average-power pump source and energy storage in the enhancement cavity. Dispersion in the enhancement cavity ceases to be a concern with the use of long pump pulses. Limitations set by the Kerr nonlinearity of the amplifier crystal are analyzed, and ways to overcome them using self-defocusing nonlinearities are discussed.  相似文献   

2.
We report on the pulse contrast-ratio characterization of a few-cycle 0.2 TW optical parametric chirped pulse amplifier system operating at 20 Hz. A specially designed third-order correlator was used to characterize and optimize the contrast of the system. We demonstrate that the pulse contrast depends much more on the temporal overlap between the pump and the seed pulse than the shape of the amplified spectrum. The best amplified pulse contrast-ratio was 10-4 at Δt=±25 ps and >10-9 at Δt=±150 ps delays. PACS 42.65.Vj; 42.65.Re  相似文献   

3.
We report on direct observation of temporal contrast degradation of short pulses amplified by optical parametric chirped-pulse amplification. We show that, despite injection seeding, quantum-noise-induced fast modulations (< 50 ps) of the temporal profile of the pump pulse are imprinted on the spectrum of the amplified chirped pulse and give rise to a large picosecond pedestal in the time domain.  相似文献   

4.
Yu L  Liang X  Li J  Wu A  Zheng Y  Lu X  Wang C  Leng Y  Xu J  Li R  Xu Z 《Optics letters》2012,37(10):1712-1714
In this Letter, we report on what is, to our knowledge, the first experimental demonstration of yttrium calcium oxyborate (YCOB) for joule-level and broadband non-collinear optical parametric chirped-pulse amplification centered at 800 nm. Based on a Ti:sapphire chirped-pulse amplification front end, an amplified signal energy of 3.36 J was generated with a pump of 35 J in the crystal. Compressed pulse duration of 44.3 fs, with a bandwidth of 49 nm, was achieved. The results confirm that YCOB crystal is another potential alternative as a final amplifier besides Ti:sapphire in a petawatt laser at 800 nm.  相似文献   

5.
The use of a low finesse enhancement cavity resonant with a low average power (<1 W) and a high repetition rate (78 MHz) pump source is shown to achieve 55% conversion efficiency into signal and idler from the coupled pump in an optical parametric process, whereas an equivalent amount of pump power in a single-pass configuration leads to negligible conversion. Careful comparison of the intracavity conversion process to the single-pass case is performed to assess the underlying impedance matching that yields the high conversion results.  相似文献   

6.
We describe a compact, reliable, high-power, and high-contrast noncollinear optical parametric chirped-pulse amplifier system. With a broadband Ti:sapphire oscillator and grating-based stretching and compression, the chirped pulses are amplified from 0.1 nJ to 122 mJ in type I beta-barium borate optical parametric chirped-pulse amplifiers with a total gain of over 10(9) at 10 Hz repetition rate. Pulse compression down to 19-fs duration achieved after amplification indicates a peak power of 3.2 TW at an average power of 0.62 W. The prepulse contrast is measured to be less than 10(-8) on picosecond time scales.  相似文献   

7.
在考虑了光参量啁啾脉冲放大中的脉冲波形、相位失配和时间同步抖动情况下,给出了计算光参量啁啾脉冲放大增益特性更为完善的三波耦合理论模型。并在1 ns的时间同步抖动情况下,对比分析了光参量放大在小信号放大及饱和放大时的增益稳定性。光参量放大的时间同步抖动对增益影响非常大,使放大信号光脉冲的增益光谱发生了明显的偏移,波形不对称和整个增益降低;并且信号光光谱越宽,光参量放大间的时间同步抖动对其增益影响越严重;但随着参量放大增益饱和的出现和加深,信号光和抽运光之间的同步时间抖动对放大信号光的输出强度影响减弱,即在饱和放大处可以获得更稳定的放大信号光输出。  相似文献   

8.
Ultra-broadband optical parametric chirped-pulse amplification is analyzed based the compensation of phase-mismatch, which is achieved by matching of both group-velocity and pulse-front between signal and idler by the combination of the noncollinear-phase-match and pulse-front-tilt. The results show exactly matching of both group-velocity and pulse-front is the important criterion for constructing an UBOPCPA. Its general model is developed, in which the group velocities, noncollinear angles, spatial walk-off angles, linear angular spectral dispersion coefficients and pulse-front tilted angles are suitably linked to each other. Finally, specific numerical calculations and simulations are presented for β-barium borate OPCPA with type-I noncollinear angularly dispersed geometry.  相似文献   

9.
 在考虑了光参量啁啾脉冲放大中的脉冲波形、相位失配和时间同步抖动情况下,给出了计算光参量啁啾脉冲放大增益特性更为完善的三波耦合理论模型。并在1 ns的时间同步抖动情况下,对比分析了光参量放大在小信号放大及饱和放大时的增益稳定性。光参量放大的时间同步抖动对增益影响非常大,使放大信号光脉冲的增益光谱发生了明显的偏移,波形不对称和整个增益降低;并且信号光光谱越宽,光参量放大间的时间同步抖动对其增益影响越严重;但随着参量放大增益饱和的出现和加深,信号光和抽运光之间的同步时间抖动对放大信号光的输出强度影响减弱,即在饱和放大处可以获得更稳定的放大信号光输出。  相似文献   

10.
根据准相位匹配理论计算了周期极化LiTaO3(PPLT)体中0类准相位匹配过程(e+e→e)的增益曲线.在此基础上,使用数百μJ的低抽运能量获得了~106的增益和-10.3%的转换效率,实现了中心波长位于1064nm的基于简并光学啁啾脉冲参量放大(OPCPA)技术的高增益放大,为产生超短超强激光脉冲提供了新的技术手段.实验结果与理论预期基本符合.  相似文献   

11.
准相位匹配晶体在光参量放大过程具有更大的有效非线性系数,数值分析显示在光参量前级放大过程中就能够提供6.2×106的高增益饱和放大,参量转换效率大于25%,并基于准相位匹配的参量增益特性给出了一个全二极管激光器泵浦的亚TW级高重复频率OPCPA系统的优化设计.  相似文献   

12.
 光参量啁啾脉冲放大(OPCPA)在饱和放大区存在一个增益稳定点,据此设计了一个输出稳定的三级OPCPA系统;第一、二、三级分别选用准相位匹配的周期极化钛氧磷酸钾(PPKTP)晶体、LBO晶体和KDP晶体作为增益介质。饱和放大时,增益随泵浦光强度变化时的增益输出稳定性明显改善,在泵浦光强度抖动低于6%的情况下,各级光参量放大器OPA输出的增益抖动小于1%。前级采用准相位匹配的PPKTP晶体作为增益介质,在远低于破坏阈值的30MW/cm2的泵浦功率密度下,可得到2×105的饱和放大增益和20%的能量转换效率。  相似文献   

13.
High-conversion-efficiency, high-stability optical parametric chirped-pulse amplification is demonstrated with a spatiotemporally shaped pump laser system. Broadband 5-mJ pulses are produced at a 5-Hz repetition rate with a pump-to-signal conversion efficiency of 29% and energy stability better than 2% rms. To our knowledge this is the highest conversion efficiency and stability achieved in an optical parametric chirped-pulse amplification system.  相似文献   

14.
We have demonstrated highly efficient broadband amplification by an optical parametric chirped pulse amplifier (OPCPA) system that uses high energy seed pulses. The OPCPA consists of three type I B-barium borate (BBO) crystals pumped by a Q-switched Nd:YAG laser. We successfully amplified the microjoule level seed pulses to 78 mJ with a pump-to-signal optical conversion efficiency of 26% at a 10 Hz repetition rate. To our knowledge these results represent the most optically efficient OPCPA to date pumped by a typical Q-switched laser.  相似文献   

15.
A new high-contrast, high-gain optical parametric chirped-pulse amplifier (OPCPA) architecture is demonstrated in periodically poled KTiOPO4 (PPKTP). This architecture overcomes parametric fluorescence contrast limitations of the OPCPA in periodically poled materials. The scheme is based on two passes of a single relay-imaged pump pulse and a free-propagating signal pulse through a 1.5 mm x 5 mm x 7.5 mm PPKTP crystal. The output energy of 1.2 mJ is generated at a center wavelength of 1053 nm by 24 mJ of pump energy. A prepulse contrast level of > 3 x 10(7) was measured with > 10(6) saturated gain in the amplifier. Amplified pulses were compressed to 200 fs. This simple and versatile concept requires only a modest pump energy from a commercial pump laser and represents a possible high-contrast front end for high-energy Nd:glass-based petawatt-class lasers.  相似文献   

16.
Liao ZM  Jovanovic I  Ebbers CA  Fei Y  Chai B 《Optics letters》2006,31(9):1277-1279
Optical parametric chirped-pulse amplification (OPCPA) in nonlinear crystals has the potential to produce extremes of peak and average power but is limited either in energy by crystal growth issues or in average power by crystal thermo-optic characteristics. Recently, large (7.5 cm diameter x 25 cm length) crystals of yttrium calcium oxyborate (YCOB) have been grown and utilized for high-average-power second-harmonic generation. Further, YCOB has the necessary thermo-optic properties required for scaling OPCPA systems to high peak and average power operation for wavelengths near 1 microm. We report what is believed to be the first use of YCOB for OPCPA. Scalability to higher peak and average power is addressed.  相似文献   

17.
A diode-pumped, cryogenic-cooled Yb:YAG regenerative amplifier utilizing gain-narrowing has been developed. A 1.2-ns chirped-seed pulse was simultaneously amplified and compressed in the regenerative amplifier, which generated a 35-ps pulse with ~8-mJ of energy without a pulse compressor. Second-harmonics of the amplified pulse was used to pump picosecond two-color optical parametric amplification.  相似文献   

18.
根据准相位匹配理论计算了周期极化LiTaO3(PPLT)晶体中0类准相位匹配过程(e+e→e)的增益曲线.在此基础上,使用数百μJ的低抽运能量获得了~106的增益和~10.3%的转换效率,实现了中心波长位于1064nm的基于简并光学啁啾脉冲参量放大(OPCPA)技术的高增益放大,为产生超短超强激光脉冲提供了新的技术手段.实验结果与理论预期基本符合.  相似文献   

19.
Phase-stabilized 12-fs, 1-nJ pulses from a commercial Ti:sapphire oscillator are directly amplified in a chirped-pulse optical parametric amplifier and recompressed to yield near-transform-limited 17.3-fs pulses. The amplification process is demonstrated to be phase preserving and leads to 85-microJ, carrier-envelope-offset phase-locked pulses at 1 kHz for 0.9 mJ of pump, corresponding to a single-pass gain of 8.5 x 10(4).  相似文献   

20.
We discuss a dual-stage optical parametric chirped-pulse amplifier generating sub-100-fs pulses in the mid-infrared at a repetition rate of 100 kHz. The system is based on a 1064 nm pump laser and a 3–4 μm difference frequency generation seed source derived from the output of a femtosecond fiber laser amplifier. Both lasers are commercially available, are diode-pumped, compact, and allow for turn-key operation. Here, we focus our discussion on the design and dimensioning of the optical parametric chirped-pulse amplifier. In particular, we review the available gain materials for mid-infrared generation and analyze the impact of different stretching scenarios. Timing jitter plays an important role in short-pulse parametric amplifier systems and is therefore studied in detail. The geometry of the amplifier stages is optimized through a full 3-dimensional simulation with the aim of maximizing gain bandwidth and output power. The optimized system yields output pulse energies exceeding 1 μJ and an overall gain larger than 50 dB. The high repetition rate of the pump laser results in an unprecedented average power from a femtosecond parametric system at mid-infrared wavelengths. First experimental results confirm the design and the predictions of our theoretical model.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号