共查询到20条相似文献,搜索用时 0 毫秒
1.
采用基于高温固相的两步合成法,以BaSiO3为前驱体制备了Ba3Si6O9N4∶Eu2+荧光粉,主要研究了不同Eu2+掺杂浓度对Ba3Si6O9N4∶Eu2+荧光粉发光性能的影响机理,并与传统高温固相法制备的Ba3Si6O9N4∶Eu2+荧光粉的发光机理进行了对比分析。结果表明:与传统高温固相法相比,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉具有更高的纯度和结晶度。Eu2+掺杂浓度大于9%时,两步法和传统高温固相法制备的样品都发生浓度猝灭现象。传统高温固相法与两步法制备Ba3Si6O9N4:Eu2+荧光粉的浓度猝灭机理一致,均是由于电偶极-电偶极相互作用造成的。在330nm的激发光下,两步法制备的Ba3Si6O9N4∶Eu2+荧光粉的发射光谱(峰值489nm)与传统的高温固相法(峰值512nm)相比,出现了蓝移的现象,更加接近于理论发射光谱中心(480nm)。能谱分析结果显示,两步法制备的荧光粉的元素组分更接近理论值,能有效降低晶格缺陷。两步法制备的Ba3Si6O9N4∶Eu2+荧光粉样品具有更好的热稳定性,更利于白光LED的应用。 相似文献
2.
采用高温固相法合成了适合近紫外光、蓝光激发的K2ZnSiO4∶Eu3+红色荧光粉,研究了该荧光粉的发光特性。XRD结果显示,所合成的荧光粉主晶相为K2ZnSiO4。样品的激发光谱由O2-→Eu3+电荷迁移带(200~350nm)和Eu3+离子的特征激发峰(350~500nm)组成,最强峰位于396nm,次强峰位于466nm。在396nm和466nm激发下,样品均呈多峰发射,分别由Eu3+离子的5D0→7FJ(J=0,1,2,3,4)能级跃迁产生,其中619nm处峰值最大。增加Eu3+离子的掺杂浓度,荧光粉的发光逐渐增强。在实验测定的浓度范围内,未出现浓度猝灭现象。不同Eu3+浓度样品的色坐标均位于色品图红光区,非常接近NTSC标准。 相似文献
3.
采用高温固相法合成了Al18B4O33∶Cr3+荧光粉,使用X射线粉末衍射仪和FSEM对样品的结构和形貌进行了表征,采用荧光分光光度计及紫外分光光度计研究了样品的发光性质及光吸收性质。结果表明,在紫外光或530~630 nm可见光激发下,样品能够发射出660~720 nm的红光,两个发射峰分别位于683 nm和694 nm,其最佳激发波长为590 nm。当原料中Al和B的量比为3.5时,样品的发光最强。初步分析了H3BO3的加入对样品发光影响的机理。样品的最佳煅烧温度为1 150℃。随着Cr3+掺杂浓度的升高,样品发光增强,但发光效率降低。样品的漫反射光谱表明,样品对绿光、黄橙光及紫外光有较强的吸收,是一种潜在的优良农用转光剂材料。 相似文献
4.
5.
微波法合成红色荧光粉CaCO_3:Eu~(3+) 总被引:3,自引:0,他引:3
采用微波法合成了红色荧光粉CaCO_3:Eu~(3+)。通过SEM,XRD和PL-PLE光谱等对样品的性能进行了表征和分析。同时,研究了微波功率对样品发光性能的影响。结果表明:样品在不同功率下会生成球霰石型的花片状、方解石型的立方体和文石型的针状等不同晶型的碳酸钙,颗粒的分散性好。波谱分析说明,掺杂Eu~(3+)作为发光中心进入到CaCO_3晶格中,其激发光谱主要由200~300 nm的Eu~(3+)—O~(2-)电荷迁移跃迁形成,属于宽带激发,在319,395,465,535 nm等处有窄的激发峰出现。在发射光谱中,由于磁偶极跃迁~5D_0→~7F_1受到不同晶体场的作用而分裂为593和589 nm两个峰,最强的发射峰为614 nm,对应于Eu~(3+)的电偶极跃迁~5D_0→~7F_2,属于纯正的红色发光。此外,随着微波功率的提高,基质的晶型逐渐由花片状的球霰石向针状的文石型过渡,样品的红色发射强度也逐渐增强。 相似文献
6.
采用氨水、双氧水和磷酸氢二铵溶液作沉淀剂,通过共沉淀法制备出Y(P,V)O4∶Tm3+荧光粉,利用XRD、SEM、紫外以及真空紫外激发下的发射光谱对其进行研究。结果表明:共沉淀法制备的Y(P,V)O4∶Tm3+荧光粉的颗粒形貌好,在147nm真空紫外光和254nm紫外光激发下,荧光粉发射主峰位于476nm,色坐标范围为: 0. 167≤x≤0. 200; 0. 146≤y≤0. 183。从这些结果来看,Y(P,V)O4∶Tm3+体系还不能满足实际应用的要求,仍需进一步的深入研究以改善其性能。 相似文献
7.
《发光学报》2021,(4)
采用高温固相法制备了Sr_3LiSbO_6∶Eu~(3+)(SLSO∶Eu~(3+))红色荧光粉。系统研究了Eu~(3+)浓度对发光强度的影响,并对样品进行了XRD、荧光光谱(PL)、荧光寿命、热稳定性和色坐标分析。结果表明,制备的荧光粉Sr_3LiSbO_6∶Eu~(3+)可被紫外光激发,并在612 nm处表现出较强的红光发射带。研究了样品的浓度猝灭效应,样品的最佳掺杂浓度为0.04%,猝灭主要是因为偶极-偶极相互作用引起的。此外,还探讨了样品的热稳定性,在423 K时的发光强度为室温下的43.1%。最后对样品的荧光寿命和CIE进行了测试。以上结果表明制备的荧光粉Sr_3LiSbO_6∶Eu~(3+)是一种新型LED红色荧光材料。 相似文献
8.
采用高温固相法成功合成了新型BaMoO4:Pr3+黄绿色荧光材料,并对其晶体结构、形貌和发光性质进行了研究。X射线衍射(XRD)测试结果表明在1300℃制备的样品具有白钨矿类结构晶体,样品的形貌在扫描电镜(SEM)显示下呈不规则外形。荧光样品激发光谱由强的电荷迁移跃迁(CT)带和Pr3+离子的特征激发峰组成,主激发峰位于447nm(3 H4→3P2)、472nm(3 H4→3P1)和485nm(3 H4→3P0);其发射谱峰分别位于527nm(3P1→3 H4,5)、542nm和551nm(3P0→3 H5)、596nm(1 D2→3 H4)、614nm(3P0→3 H6)和642nm(3P0→3F2),最强发射峰位于642nm处。获得Pr3+的最佳掺杂摩尔分数为0.2%~0.3%。研究表明:BaMoO4:Pr3+是一种有望应用于蓝光发光二极管(LED)有效激发的黄绿色荧光粉材料。 相似文献
9.
采用高温固相法合成了Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)荧光粉,X射线粉末衍射数据分析结果表明,试样为氧磷灰石结构,属于六方晶系,具有P63/m(176)空间点群结构.荧光光谱分析结果表明,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)激发光谱为位于200~600nm,由275nm、336nm两个宽峰和392nm、461nm、466nm、523nm等锐线峰组成.两个宽带激发峰可由272nm、300nm、336nm三峰拟合而成,峰面积比为1:0.52:4.09.272nm、300nm峰归属于Eu3+的电荷迁移激发跃迁态,336nm峰来自Eu2+的f-d跃迁.在393nm激发下,Sr_2La_8(SiO_4)_6O_2∶Eu~(2+,3+)发射光谱在500~750nm范围内呈现多条锐线发射,在613nm处发射峰最强,以电偶极跃迁5D0→7F2为主,Eu3+占据无反演对称中心格位.Eu3+磁偶极跃迁5D0→7F1处的峰可由584.5nm、588.5nm、594nm、597nm四峰拟合而成,表明Eu3+进入基质晶格中占据4f(C3)和6h(Cs)两种格位.X射线光电子能谱图分析结果表明,试样中Eu3+与Eu2+的含量比接近2∶1.Eu2+与Eu3+存在能量传递作用,试样在紫外灯下照射呈现烛光黄色,可用于LED. 相似文献
10.
对草酸作为沉淀剂制备的细颗粒红色荧光粉Y2 O3 ∶Eu3 + 进行结构和发光特性研究 ,结果表明 :其一次粒径为 2 0~ 30nm ,团聚尺寸D50 =0 .5 3μm。该荧光粉最大激发峰位于 2 5 2 .2nm ,较微米级荧光粉 2 33nm红移了 19.2nm ;最大的发射峰位于 6 12nm ,与微米级的相比几乎没有差别。Eu3 + 离子的掺入构成了发光中心 ,其最佳掺杂的质量分数为 9% ,荧光粉发光的猝灭浓度由微米级的 6 %提高到 9%。由于纳米晶存在表面缺陷和悬挂键 ,其亮度约为微米晶的 70 %左右 ,随着团聚尺寸的增加、煅烧温度的提高和助熔剂的加入 ,荧光粉的发光强度增大。包膜能部分消除表面缺陷和悬挂键 ,提高发光亮度。荧光粉的色坐标为x =0 .6 4 79,y =0 .344 2。 相似文献
11.
采用高温固相反应法制备了Ba1.97Ca1-x(B3O6)2∶Eu2+,Mnx2+(x=0,0.03,0.06,0.15)荧光粉,研究了其相组成与荧光特性。结果表明,样品具有单相Ba2Ca(B3O6)2晶体结构。Eu2+同时占据Ba2+格位和Ca2+格位。在317 nm波长的紫外光激发下,Eu2+辐射出峰值在450 nm附近的宽谱蓝光。通过能量传递作用,Mn2+辐射峰值为600 nm左右的宽谱红光。蓝光和红光叠加形成色坐标为(x=0.371,y=0.282)的近白光发射。样品的激发光谱分布在250~400 nm的波长范围,有望在紫外激发的白光LED中获得应用。 相似文献
12.
《中国光学》2021,(3)
采用高温固相法制备了金属离子Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)系列荧光粉,研究了不同浓度Bi~(3+)掺杂Lu_(1-x)O_3:x%Ho~(3+)荧光粉的晶体结构、Lu_2O_3基质中Bi~(3+)→Ho~(3+)的能量传递规律及合成粉体的发光性质。X射线衍射结果表明Bi~(3+)、Ho~(3+)掺杂对Lu_2O_3的立方相结构没有影响。在322 nm激发波长下发射出位于551 nm处Ho~(3+)的~5S_2→~5I_8跃迁;在551 nm监测下,合成的Ho~(3+)、Bi~(3+)共掺杂Lu_2O_3荧光粉出现Bi~(3+)的322 nm特征激发峰以及Ho~(3+)的448 nm处的~5I_8→~5F_1跃迁。当Bi~(3+)掺杂浓度为1.5%时,Bi~(3+)对Ho~(3+)的能量传递最有效,比单掺Ho~(3+)样品发射强度提高了34.8倍。Lu_(98.5%-y)O_3:1.5%Ho~(3+),y%Bi~(3+)(y=1,1.5,2)样品,随着Bi~(3+)掺杂浓度增加,用980 nm激发比322 nm激发在551 nm处获得的光强分别提高了13.3倍、16.8倍、14.2倍。通过计算得到Bi~(3+)和Ho~(3+)之间的能量传递临界距离为2.979 nm,且Bi~(3+)与Ho~(3+)之间的能量传递是通过偶极-四极相互作用实现的。 相似文献
13.
采用水热法制备了CaGd_(2-x-y)(MoO_4)_4∶xEu~(3+),yBi~(3+)(x=0.01~2,y=0~0.04)系列红色荧光粉。分别用XRD、SEM和荧光分光光度计对样品的晶体结构、微观形貌和发光性能进行了研究。结果表明,样品荧光粉具有体心四方白钨矿结构,属于I4_1/a(88)空间群,15%Eu~(3+)和1%Bi~(3+)(摩尔分数)的相继掺杂对样品基质晶体结构影响不大。样品粉末颗粒呈类八面体状,粒度比较均一,分散性良好,粒径在3~5μm之间。样品的激发光谱由位于200~350 nm的激发宽带和位于350~550 nm的系列激发峰构成,最强激发峰位于396 nm。发射主峰位于617 nm,对应于Eu~(3+)的~5D_0→~7F_2特征跃迁发射。研究未发现Eu~(3+)的浓度猝灭现象。Bi~(3+)的掺杂能对Eu~(3+)起敏化作用,显著提高样品的红光发射和色纯度,其作用类型为交换交互型,最佳掺杂量y=0.01。 相似文献
14.
采用高温固相反应法,在Ar气氛中,合成了K_2NaAlF_6和KAlF_4基质化合物.分别测定了它们的结构,并计算了晶胞参数.测定了K_2NaAlF_6:Ce~(3+)和KAlF_4:Ce~(3+)磷光体的激发光谱和荧光光谱,根据Ce~(3+)的光谱结构的特点,讨论了Ce~(3+)的取代格位. 相似文献
15.
《发光学报》2021,(1)
利用高温固相法制备了一系列发光颜色可调的Ba_3YB_9O_(18)∶Tb~(3+),Eu~(3+)荧光粉。采用X射线衍射(XRD)、透射电子显微镜(TEM)研究了所得荧光粉的相纯度和晶体结构。XRD精修结果表明,当Y~(3+)被Eu~(3+)取代时,Ba_3YB_9O_(18)∶Tb~(3+),Eu~(3+)系列样品的线性结构变化能很好地符合Vegard定律。此外,通过发射光谱和荧光寿命验证了Ba_3YB_9O_(18)∶Tb~(3+),Eu~(3+)荧光粉中Tb~(3+)到Eu~(3+)的能量传递过程。Tb~(3+)到Eu~(3+)的能量传递机理为偶极-偶极相互作用。随着Eu~(3+)掺杂量的增加,荧光粉的发光颜色可以由绿色逐渐过渡到红色。这些结果表明合成的Ba_3YB_9O_(18)∶Tb~(3+),Eu~(3+)荧光粉在紫外光激发的固态照明领域具有潜在的应用前景。 相似文献
16.
使用高温固相法于还原气氛中合成了SrLiAl_3N_4∶Eu~(2+)荧光粉并研究了其晶体结构和发光性质。样品均可以被蓝光或紫外光有效激发发射红光。XRD和SEM图谱显示合成了单相SrLiAl3N4。粉体的激发光谱在200~600nm波长范围内呈现出双峰宽带激发带,在267nm、474nm处分别有一个激发峰。发射光谱仅有一个宽带发射峰,峰值在654nm处,属于Eu~(2+)离子的5d→4f特征跃迁。荧光粉发光强度与Eu~(2+)离子掺杂摩尔分数之间的关系表明:随着Eu~(2+)离子掺杂摩尔分数的增加,粉体发光强度先上升后下降,最佳掺杂摩尔分数为0.4%,继续增大Eu~(2+)离子的掺杂量会发生浓度猝灭现象。所准备的SrLiAl_3N_4∶Eu~(2+)荧光粉具有较好的热稳定性和较高的量子效率。 相似文献
17.
《光学学报》2015,(5)
采用高温固相法合成Li2Ba Si O4:Sm3+荧光粉,X-射线衍射(XRD)结果表明,850oC高温制备的Li2Ba Si O4∶Sm3+为六方晶系结构,随着Sm3+掺入量增加,衍射峰向大角度方向偏移,晶格畸变增加。该材料在330~500 nm处有很强的吸收,能被近紫外光和蓝光发光二极管(LED)有效激发,当Sm3+质量分数为1.5%时发光强度最大,且I650/I607比值最小,表明Sm3+优先进入Li2Ba Si O4对称格位。在402 nm激发时,发出518、563、607、650和707 nm发射峰,其中518 nm来源于Li2Ba Si O4∶Sm3+缺陷发光,其他4个峰来源于Sm3+的4G5/2→6HJ(J=5/2,7/2,9/2,11/2)发光。由于缺陷发光,Li2Ba Si O4∶Sm3+的色坐标位于黄光区域,并分析了缺陷发光机理。 相似文献
18.
利用Na2CO3作为助熔剂,采用高温固相反应方法制备了三价铕离子激活的Gd2Mo3O9红色荧光粉。利用XRD和荧光光谱,研究了助熔剂的量、制备时的温度以及激活剂Eu3 的浓度对荧光粉的晶体结构和发光性能的影响。测试结果表明,这种新型的荧光粉可以被紫外光280nm,近紫外光395nm和蓝光465nm有效激发,发射主峰位于613nm,并且证明Eu3 离子在晶体结构中占据了非反演对称中心的位置。395,465nm的吸收与目前广泛应用的紫外和蓝光LED芯片的输出波长相匹配。因此,这种荧光粉是一种可能应用在白光LED上的红色荧光粉材料。 相似文献
19.
采用高温固相法制备了KLa(Mo O4)2∶Sm3+红色荧光粉,利用X射线衍射对晶体结构进行表征,发现不同浓度Sm3+掺杂的样品均为单斜相结构。测量了样品的激发和发射光谱,观察到样品在紫外区及可见蓝绿区均有强的激发带,在404 nm激发下存在4个发射峰。测量了不同温度下样品的发射光谱和荧光衰减曲线,对样品的荧光温度猝灭进行了分析,确定了样品发光的温度猝灭是由横向穿越所导致的,采用Arrhennius模型对实验数据进行拟合,确定激活能约为0.48 e V,表明荧光粉具有良好的热稳定性。 相似文献
20.
《光谱学与光谱分析》2017,(8)
采用CaCO3,MgO,SiO2,Eu2O3原料,通过高温固相法制备了Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉。通过XRD图谱和PL光谱图,研究了Eu的掺杂浓度与助溶剂(NH_4Cl,BaF_2)对Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉结构、发光性能和热稳定的影响。XRD图谱对比结果表明,制备的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉XRD图与理论计算得到的图谱几乎一致。Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉在360~450nm有很强的激发强度,并且在440nm激发下发射峰值波长为530nm的发射光。随着Eu~(2+)离子浓度的增加,发射光谱出现了红移,且在Eu~(2+)离子浓度约为6%时发生了浓度猝灭现象。当添加NH_4Cl和BaF_2作为助溶剂,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度有一定提高。与未添加助溶剂的Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉的发光强度相比,添加NH_4Cl助溶剂后发光强度增加了70%。此外,当温度升高至150℃时,Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉和商用绿色荧光粉的发光强度分别降低了7.6%和14%,表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉具有良好的热稳定性。这些发光性能均表明Ca_3Mg_3Si_4O_(14)∶Eu~(2+)荧光粉是是一种可应用于固态照明的有前景的绿色荧光粉。 相似文献