首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ESCA examination on Ni-Cr alloys has shown that a thin passive film was formed after 24 h immersion in 0.1 M NaCl. The film contained only chromium oxide in the form of Cr2O3. Electrochemical techniques according to ASTM G59 and ASTM G5 were used for the determination of the relative corrosion rate of the alloys. Both Ni-10 wt. % Cr and Ni-20 wt. % Cr alloys showed a slightly higher corrosion rate than the Ni-40 wt. % Cr alloy.The present ESCA study of the Ni-Cr system is part of our programme which involves an examination of the four binary alloy systems Fe-Si, Cr-Co, Ni-Cr, and Mo-Ni [1]. The aim is to correlate the structure and composition of the passive films formed in 0.1 M NaCl to the corrosion behaviour in the same solution.  相似文献   

2.
ESCA examination of films formed on Cr-Co alloys after immersion in 0.1M NaCl for 24 h has shown that the thickness of passive films decreased with an increase in chromium content. Surface films consisted of chromium and cobalt oxides as Cr2O3 and CoO. The amount of CoO in the surface film of the alloy was decreased with an increase in chromium but Cr2O3 was found at a greater depth in the passive film at any composition. Cr2O3 was a major component of the surface film when the chromium content in the alloy was 10% or higher. Electrochemical techniques according to ASTM G59 and ASTM G5 were used for the determination of the relative corrosion rate. Both Co-10 wt.% Cr and Co-30 wt.% Cr alloys investigated showed a lower corrosion rate than the Co-5 wt.% Cr alloy. Corrosion rate measured could be correlated to the surface film composition and structure as determined by ESCA.  相似文献   

3.
Fe-Ti alloys containing 5 to 47% Ti have been studied by ESCA. The alloys were exposed to 0.1 M NaCl for 24 h under open-circuit potential (OCP) during which passive films were formed. The passive film consisted of FeO and TiO2 in the inner layer while Fe2O3, water, and hydroxyl groups were present in the outermost monolayers, irrespective of composition. The thickness of the passive layer was reduced from 4.4 nm to 1.0 nm with increasing Ti content. The amount of iron oxide in the passive layer also decreased with increasing Ti. Electrochemical techniques according to ASTM G59 and ASTM G5 were used for the determination of the relative corrosion rate of the alloys. Alloys with 5–28% Ti showed a relatively high corrosion rate but that with 47 wt.% Ti had a much lower corrosion rates.  相似文献   

4.
After immersion in a 0.1 M NaCl solution for 1 h at various controlled potentials, the surface films formed on two commercial stainless steels, 18–12 and 29-4-2, have been studied using a surface analysis technique ESCA (Electron Spectroscopy for Chemical Analysis) combined with ion etching. The influence of controlled potential in the lower region, between the OCP and the critical pitting potential, on the structure and chemical composition of the passive film is in limited agreement with the prior work. At higher controlled potentials above the pitting potential, the surface films consist of two components: the passive film and corrosion products. Changes to both oxidized chromium and metallic iron form major differences in the depth profiles in comparison with the previous results with the passive film. At higher controlled potentials oxidized alloying elements tend to the higher oxidation states on the outermost part of surface together with a possibility of enhanced adsorption of chloride ions. There is a great amount of oxidized molybdenum and chloride ions mainly from the corrosion products on the surface at higher applied potential. Their contents increase with the controlled potential.  相似文献   

5.
This report deals with the structure of the passive film formed on stainless steels during immersion in a 0.1 M NaCl solution for various immersion times. The film was examined using ion etching and Electron Spectroscopy for Chemical Analysis (ESCA).Through the chemical-composition profiles a three-factor model was developed to describe the structure of the passive films: a hydrated layer in contact with the solution, an oxide layer consisting of iron and chromium oxides having maxima at depths of 3 and 10 Å, respectively, and a metallic layer enriched in nickel. There is a smooth transition between the layers, with the thickness of the outer two layers being about 15 A. The maximum concentration of iron in the oxidized state decreases with increasing immersion time concomitant with an increase in both the maximum concentration of chromium in the oxidized state and the maximum concentration of nickel in the metallic state.It is found that air-formed films have similar structures to films formed by exposure to the solution. Longer air exposure thickens the air-formed film, with the maximum of both oxidized iron and chromium nearly equal in magnitude in comparison with the solution formed films. Films formed by short-time exposure only to the solution are somewhat thinner indicating that the total history is important in determining the structure of these passive films, whereas passive films formed by exposures of 15 h to the solution are no longer strongly dependent on prior air exposure.  相似文献   

6.
For electrolytic capacitor application of the single-phase Ti alloys containing supersaturated silicon, which form anodic oxide films with superior dielectric properties, porous Ti-7 at% Si columnar films, as well as Ti columnar films, have been prepared by oblique angle magnetron sputtering on to aluminum substrate with a concave cell structure to enhance the surface area and hence capacitance. The deposited films of both Ti and Ti-7 at% Si have isolated columnar morphology with each column revealing nanogranular texture. The distances between columns are ∼500 nm, corresponding to the cell size of the textured substrate and the gaps between columns are 100-200 nm. When the porous Ti-7 at% Si film is anodized at a constant current density in ammonium pentaborate electrolyte, the growth of a uniform amorphous oxide film continues to ∼35 V, while it is limited to less than 6 V on the porous Ti film. The maximum voltage of the growth of uniform amorphous oxide films on the Ti-7 at% Si films is similar for both the flat and porous columnar films, suggesting little influence of surface roughness on the amorphous-to-crystalline transition of growing anodic oxide under the high electric field. Due to the suppression of crystallization to sufficiently high voltages, the anodic oxide films formed on the porous Ti-7 at% Si film shows markedly improved dielectric properties, in comparison with those on the porous Ti film.  相似文献   

7.
Thin films of silicon nanoparticles (diameter 5-10 nm) were deposited on highly oriented pyrolytic graphite (HOPG) by low-pressure DC magnetron sputtering. The effect of different room-temperature oxidation techniques was investigated using XPS sputter-depth profiling. Both oxygen treatment during deposition (using an argon-oxygen mixture in the sputter gas) as well as post-deposition oxidation techniques (exposure to oxygen plasma beam, ambient air conditions) were studied. In all cases oxidation was found to involve the whole film down to the film/substrate interface, indicating a network of open pores. Depending on the type of oxidation between 15 and 25 at% of oxygen, mostly associated with low oxidation states of silicon, were detected in the interior of the film and attributed to oxidized surfaces of the individual silicon nanoparticles. The highest oxygen concentrations were found at the very film surface, reaching levels of 25-30% for films exposed to air or prepared by reactive magnetron sputtering. For the oxygen plasma-treated films even oxygen surface concentrations around 45% and fully oxidized silicon (i.e., SiO2) were achieved. At the Si/HOPG interface formation of silicon carbide was observed due to intermixing induced by Ar-ion beam used for sputter-depth profiling.  相似文献   

8.
Laser surface alloying (LSA) with silicon was conducted on austenitic stainless steel 304. Silicon slurry composed of silicon particle of 5 μm in average diameter was made and a uniform layer was supplied on the substrate stainless steel. The surface was melted with beam-oscillated carbon dioxide laser and then LSA layers of 0.4–1.2 mm in thickness were obtained. When an impinged energy density was adjusted to be equal to or lower than 100 W mm−2, LSA layers retained rapidly solidified microstructure with dispersed cracks. In these samples, Fe3Si was detected and the concentration of Si in LSA layer was estimated to be 10.5 wt.% maximum. When the energy density was equal to or greater than 147 W mm−2, cellular grained structure with no crack was formed. No iron silicate was observed and alpha iron content in LSA layers increased. Si concentration within LSA layers was estimated to be 5 to 9 wt.% on average. Crack-free as-deposited samples exhibited no distinct corrosion resistance. The segregation of Si was confirmed along the grain boundaries and inside the grains. The microstructure of these samples changed with solution-annealing and the corrosion resistance was fairly improved with the time period of solution-annealing. Received: 2 September 1999 / Accepted: 6 September 1999 / Published online: 1 March 2000  相似文献   

9.
In this paper we investigate the formations and morphological stabilities of Co-silicide films using 1-8-nm thick Co layers sputter-deposited on silicon(100) substrates.These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450℃ to 850℃.For a Co layer with a thickness no larger than 1 nm,epitaxially aligned CoSi2 films readily grow on silicon(100) substrate and exhibit good morphological stabilities up to 600℃.For a Co layer thicker than 1 nm,polycrystalline CoSi and CoSi2 films are observed.The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon(100) substrate.The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

10.
This article discusses the formation and detailed materials characterisation of nickel silicide thin films. Nickel silicide thin films have been formed by thermally reacting electron beam evaporated thin films of nickel with silicon. The nickel silicide thin films have been analysed using Auger electron spectroscopy (AES) depth profiles, secondary ion mass spectrometry (SIMS), and Rutherford backscattering spectroscopy (RBS). The AES depth profile shows a uniform NiSi film, with a composition of 49-50% nickel and 51-50% silicon. No oxygen contamination either on the surface or at the silicide-silicon interface was observed. The SIMS depth profile confirms the existence of a uniform film, with no traces of oxygen contamination. RBS results indicate a nickel silicide layer of 114 nm, with the simulated spectra in close agreement with the experimental data. Atomic force microscopy and transmission electron microscopy have been used to study the morphology of the nickel silicide thin films. The average grain size and average surface roughness of these films was found to be 30-50 and 0.67 nm, respectively. The film surface has also been studied using Kikuchi patterns obtained by electron backscatter detection.  相似文献   

11.
ESCA studies of nitrogen-containing stainless steels   总被引:2,自引:0,他引:2  
ESCA examination of films formed on nitrogen-containing stainless steels after immersion in 0.1 M NaCl revealed that nitrogen was enriched in the outer 0.5 nm of the film at a concentration a few times higher than in the substrate. The N(1s) binding energy varied from 399.6–399.7 eV at the outermost surface of the film to 398.3–398.8 eV in the film at a depth of about 0.5 nm. This indicates a change in the chemical state of nitrogen upon exposure of the nitrogen-containing stainless steels to the solution, and furthermore, that the surface nitrogen enrichment could be of significance in the improved pitting resistance.  相似文献   

12.
Photothermal laser processing of thin films of H-terminated silicon nanoparticles (Si NPs) is investigated. Ethanolic dispersions of Si NPs with an average diameter of 45 nm are spin-coated on silicon substrates yielding films with thicknesses ≤500 nm. Small-area laser processing is carried out using a microfocused scanning cw-laser setup operating at a wavelength of 532 nm and a 1/e laser spot size of 1.4 μm. In conjunction with microscopic techniques, this provides a highly reproducible and convenient approach in order to study the dependence of the resulting film morphology and composition on the experimental parameters. Processing in air results in strongly oxidized granular structures with sizes between 100 and 200 nm. The formation of these structures is dominated by surface oxidation. In particular, changing the processing parameters (i.e., laser power, writing speed, and/or the background air pressure) has little effect on the morphology. Only in vacuum at pressures <1 mbar, oxygen adsorption, and hence oxide formation, is largely suppressed. Under these conditions, irradiation at low laser powers results in mesoporous surface layers, whereas compact silicon films are formed at high laser powers. In agreement with these results, comparative experiments with films of H-terminated and surface-oxidized Si NPs reveal a strong impact of the surface oxide layer on the film morphology. Mechanistic aspects and implications for photothermal processing techniques, e.g., targeting photovoltaic and thermoelectric applications, are discussed.  相似文献   

13.
利用准分子脉冲激光晶化非晶硅薄膜是制备高密度尺寸可控的硅基纳米结构的有效方法之一.本文将脉冲激光对非晶硅超薄膜的影响处理为热传导问题,采用了基于Tersoff势函数的分子动力学方法模拟了在非晶氮化硅衬底上2.7 nm超薄非晶硅膜的脉冲激光晶化过程.研究了不同激光能量对非晶硅薄膜晶化形成纳米硅的影响,发现在合适的激光能量窗口下,可以获得高密度尺寸可控的纳米硅薄膜,进而模拟了在此能量作用下非晶硅膜中成核与生长的机理与微观过程,并对晶化所获得的纳米硅薄膜的微结构进行了分析. 关键词: 非晶硅 分子动力学 脉冲激光晶化  相似文献   

14.
In this study, hydrogen sensing properties of nanoporous Pd films based on Anodic Aluminium Oxide (AAO) templates grown on a silicon substrate have been investigated at various temperatures (25–100°C) and hydrogen concentrations (100–1000 ppm) to determine the temperature-sensitivity relationship. For this purpose, a hexagonally shaped AAO template of approximately 50 nm in diameter and 700 nm in length with 80 nm interpore distances was fabricated using two-step anodization of an Al film deposited on an n-type (100) oriented oxidized Si substrate. Then, the nanoporous surface of the AAO template was used as a substrate for supporting a nanoporous Pd film of an approximately thickness of 60 nm. The morphologies of the AAO template and Pd film coated on the AAO template were studied mainly by Scanning Electron Microscopy (SEM). Hydrogen sensing properties of the nanoporous Pd film were measured using a resistance transient method. It was found that the sensor response of the nanoporous Pd films on the AAO template was better than the traditional Pd thin film sensors, the sensitivity of the sensor was approximately 1.8% for 1000 ppm H2, and the detection limit was lower than 100 ppm at room temperature. The highest sensitivity was measured at room temperature.  相似文献   

15.
The experimental results of an investigation into the initial stages of growth of a germanium film on an atomically clean oxidized silicon surface are reported. It is shown that the growth of the germanium film in this system occurs through the Volmer-Weber mechanism. Elastically strained nanoislands with a lateral size of less than 10 nm and a density of 2 × 1012 cm?2 are formed on the oxidized silicon surface. In germanium films with a thickness greater than 5 monolayers (ML), there also arise completely relaxed germanium nanoislands with a lateral size of up to 200 nm and a density of 1.5 × 109 cm?2.  相似文献   

16.
Thin nanocrystalline amorphous NiTi film was deposited on Si substrate using DC magnetron sputtering. The as-deposited NiTi thin film was crystallized by heat treatment at 500 °C for 1 h. The crystal structure, surface morphology, microstructure and surface chemistry of the deposited films were studied using X-ray diffraction, atomic force microscopy, scanning electron microscopy and X-ray photoelectron spectroscopy (XPS), respectively. Corrosion behaviour was assessed in Ringer’s solution at 37 °C by open circuit potential (OCP), potentiodynamic polarization and electrochemical impedance spectroscopy as a function of exposure time. OCP values indicate that the tendency for the formation of a spontaneous oxide film is greater for the NiTi thin films than the bulk NiTi. Long time exposure to Ringer’s solution was found to have a great effect on the corrosion behaviour of the samples. Significantly low corrosion current density was obtained for the annealed NiTi film from the potentiodynamic polarization curves indicating a typical passive behaviour, but as-deposited film and bulk NiTi alloy exhibited breakdown of passivity at potentials approximately +1.4 V (vs. SCE). XPS showed that the oxide film formed on the annealed NiTi thin film mainly composed of Ti oxides, and no evidence of Ni was found up to 8.2 nm beneath the top surface, suggesting the excellent corrosion resistance of this sample in Ringer’s solution.  相似文献   

17.
In this paper we investigate the formations and morphological stabilities of Co-silicide fihns using 1-8-nm thick Co layers sputter-deposited on silicon (100) substrates. These ultrathin Co-silicide films are formed via solid-state reaction of the deposited Co films with Si substrate at annealing temperatures from 450 ℃ to 850 ℃. For a Co layer with a thickness no larger than i nm, epitaxially aligned CoSi2 films readily grow on silicon (100) substrate and exhibit good morphological stabilities up to 600 ℃. For a Co layer thicker than 1 nm, polycrystalline CoSi and CoSi2 films are observed. The critical thickness below which epitaxially aligned CoSi2 film prevails is smaller than the reported critical thickness of the Ni layer for epitaxial alignment of NiSi2 on silicon (100) substrate. The larger lattice mismatch between the CoSi2 film and the silicon substrate is the root cause for the smaller critical thickness of the Co layer.  相似文献   

18.
The purpose of this study has been to advance in knowledge of the chemical composition, structure and thickness of the thin native oxide film formed spontaneously in contact with the laboratory atmosphere on the surface of freshly polished commercial AZ31 and AZ61 alloys with a view to furthering the understanding of protection mechanisms. For comparative purposes, and to more fully describe the behaviour of the native oxide film, the external oxide films formed as a result of the manufacturing process (as-received condition) have been characterised. The technique applied in this research to study the thin oxide films (thickness of just a few nanometres) present on the surface of the alloys has basically been XPS (X-ray photoelectron spectroscopy) in combination with ion sputtering. Corrosion properties of the alloys were studied in 0.6 M NaCl by measuring charge transfer resistance values, which are deduced from EIS (electrochemical impedance spectroscopy) measurements after 1 h of exposure. Alloy AZ61 generally showed better corrosion resistance than AZ31, and the freshly polished alloys showed better corrosion resistance than the alloys in as-received condition. This is attributed to a combination of (1) higher thickness of the native oxide film on the AZ61 alloy and (2) greater uniformity of the oxide film in the polished condition. The formation of an additional oxide layer composed by a mixture of spinel (MgAl2O4) and MgO seems to diminish the protective properties of the passive layer on the surface of the alloys in as-received condition.  相似文献   

19.
The comprehension of passivity and its protective character against corrosion is closely connected with the electronic properties of passive films. Passive films formed anodically on carbon steel in borate/boric acid solution, pH 9.2, have been characterised by electrochemical impedance spectroscopy (EIS). Mott-Schottky plots and impedance measurements were made on films formed at different potentials and times. The investigation allowed the determination of the semiconductive properties of the films. The results of the capacitance response indicate that the passive films behave like highly doped n-type semiconductors, showing that the passive film properties are dominated by iron. The value of donors density (ND) for the passive film is of the order of 1021 cm−3 and decreases with increasing formation time and potential, indicating that defects decrease with increasing film thickness. Based on the information about the physical phenomena, an equivalent circuit is proposed to fit the experimental data, leading to determination of anodic film capacitance and film resistance.  相似文献   

20.
Polycrystalline cobalt films 100 nm thick were thermally evaporated on oxidized Si(100) substrates. Then 1H, 1H, 2H, 2H perfluorodecyltrichlorosilane (FDTS) films of various thicknesses, in the range of about 2 nm to 30 nm, were grown on cobalt surfaces by vapor phase deposition (VPD). The cobalt films modified by FDTS were investigated using magnetic force microscopy (MFM) and atomic force microscopy (AFM). MFM observation showed that the magnetic structure of the cobalt films modified by FDTS is composed of domains with a considerable component of magnetization perpendicular to the film surface. This in turn indicates that the cobalt films on oxidized Si(100) substrates crystallize in the hexagonal close-packed (HCP) phase and exhibit a texture with the hexagonal axis perpendicular to the film surface. The magnetic domains formed a maze structure. The domain width increased from typically 80–120 nm to 400–500 nm with increasing the thickness of FDTS films from about 2 nm to 30 nm. AFM imaging of the surfaces of FDTS films revealed the presence of an agglomerate morphology. The agglomerates varied in size from typically 30–70 nm to 150–300 nm as the film thickness was increased from about 2 nm to 30 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号