首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
LUO Dang 《数学季刊》2005,20(1):34-41
In the model of geometric programming, values of parameters cannot be gotten owing to data fluctuation and incompletion. But reasonable bounds of these parameters can be attained. This is to say, parameters of this model can be regarded as interval grey numbers. When the model contains grey numbers, it is hard for common programming method to solve them. By combining the common programming model with the grey system theory, and using some analysis strategies, a model of grey polynomial geometric programming, a model of θpositioned geometric programming and their quasi-optimum solution or optimum solution are put forward. At the same time, we also developed an algorithm for the problem. This approach brings a new way for the application research of geometric programming. An example at the end of this paper shows the rationality and feasibility of the algorithm.  相似文献   

2.
In this paper, a new global algorithm is presented to globally solve the linear multiplicative programming(LMP). The problem(LMP) is firstly converted into an equivalent programming problem(LMP(H))by introducing p auxiliary variables. Then by exploiting structure of(LMP(H)), a linear relaxation programming(LP(H)) of(LMP(H)) is obtained with a problem(LMP) reduced to a sequence of linear programming problems. The algorithm is used to compute the lower bounds called the branch and bound search by solving linear relaxation programming problems(LP(H)). The proposed algorithm is proven that it is convergent to the global minimum through the solutions of a series of linear programming problems. Some examples are given to illustrate the feasibility of the proposed algorithm.  相似文献   

3.
In this paper,on the basis of making full use of the characteristics of unconstrained generalized geometric programming(GGP),we establish a nonmonotonic trust region algorithm via the conjugate path for solving unconstrained GGP problem.A new type of condensation problem is presented,then a particular conjugate path is constructed for the problem,along which we get the approximate solution of the problem by nonmonotonic trust region algorithm,and further prove that the algorithm has global convergence and quadratic convergence properties.  相似文献   

4.
The Filled Function Method is a class of effective algorithms for continuous globaloptimization.In this paper,a new filled function method is introduced and used to solveinteger programming.Firstly,some basic definitions of discrete optimization are given.Then an algorithm and the implementation of this algorithm on several test problems areshowed.The computational results show the algorithm is effective.  相似文献   

5.
In this paper,a new globally convergent algorithm for nonlinear optimization prablems with equality and inequality constraints is presented. The new algorithm is of SQP type which determines a search direction by solving a quadratic programming subproblem per itera-tion. Some revisions on the quadratic programming subproblem have been made in such a way that the associated constraint region is nonempty for each point x generated by the algorithm, i. e. , the subproblems always have optimal solutions. The new algorithm has two important properties. The computation of revision parameter for guaranteeing the consistency of quadratic sub-problem and the computation of the second order correction step for superlinear convergence use the same inverse of a matrix per iteration, so the computation amount of the new algorithm will not be increased much more than other SQP type algorithms; Another is that the new algorithm can give automatically a feasible point as a starting point for the quadratic subproblems pe  相似文献   

6.
It is found that generalized geometric programming (GGP) is in fact a special case of generalized convex programming. By selecting a suitable bifunetion and calculating its adjoint function, the dual form of the standard GGP problem is derived. Some duality theorems are also obtained with this point of view. The method used is simpler and more general than what appeared in the literature.  相似文献   

7.
This paper proposes a nonmonotonic backtracking trust region algorithm via bilevel linear programming for solving the general multicommodity minimal cost flow problems. Using the duality theory of the linear programming and convex theory, the generalized directional derivative of the general multicommodity minimal cost flow problems is derived. The global convergence and superlinear convergence rate of the proposed algorithm are established under some mild conditions.  相似文献   

8.
The simplified Newton method, at the expense of fast convergence, reduces the work required by Newton method by reusing the initial Jacobian matrix. The composite Newton method attempts to balance the trade-off between expense and fast convergence by composing one Newton step with one simplified Newton step. Recently, Mehrotra suggested a predictor-corrector variant of primal-dual interior point method for linear programming. It is currently the interior-point method of the choice for linear programming. In this work we propose a predictor-corrector interior-point algorithm for convex quadratic programming. It is proved that the algorithm is equivalent to a level-1 perturbed composite Newton method. Computations in the algorithm do not require that the initial primal and dual points be feasible. Numerical experiments are made.  相似文献   

9.
In this paper,a global optimization algorithm is proposed for nonlinear sum of ratios problem(P).The algorithm works by globally solving problem(P1) that is equivalent to problem(P),by utilizing linearization technique a linear relaxation programming of the (P1) is then obtained.The proposed algorithm is convergent to the global minimum of(P1) through the successive refinement of linear relaxation of the feasible region of objective function and solutions of a series of linear relaxation programming.Nume...  相似文献   

10.
An effective continuous algorithm is proposed to find approximate solutions of NP-hardmax-cut problems.The algorithm relaxes the max-cut problem into a continuous nonlinearprogramming problem by replacing n discrete constraints in the original problem with onesingle continuous constraint.A feasible direction method is designed to solve the resultingnonlinear programming problem.The method employs only the gradient evaluations ofthe objective function,and no any matrix calculations and no line searches are required.This greatly reduces the calculation cost of the method,and is suitable for the solutionof large size max-cut problems.The convergence properties of the proposed method toKKT points of the nonlinear programming are analyzed.If the solution obtained by theproposed method is a global solution of the nonlinear programming problem,the solutionwill provide an upper bound on the max-cut value.Then an approximate solution to themax-cut problem is generated from the solution of the nonlinear programming and providesa lower bound on the max-cut value.Numerical experiments and comparisons on somemax-cut test problems(small and large size)show that the proposed algorithm is efficientto get the exact solutions for all small test problems and well satisfied solutions for mostof the large size test problems with less calculation costs.  相似文献   

11.
This paper presents a global optimization approach for solving signomial geometric programming problems. In most cases nonconvex optimization problems with signomial parts are difficult, NP-hard problems to solve for global optimality. But some transformation and convexification strategies can be used to convert the original signomial geometric programming problem into a series of standard geometric programming problems that can be solved to reach a global solution. The tractability and effectiveness of the proposed successive convexification framework is demonstrated by seven numerical experiments. Some considerations are also presented to investigate the convergence properties of the algorithm and to give a performance comparison of our proposed approach and the current methods in terms of both computational efficiency and solution quality.  相似文献   

12.
This paper derives new algorithms for signomial programming, a generalization of geometric programming. The algorithms are based on a generic principle for optimization called the MM algorithm. In this setting, one can apply the geometric-arithmetic mean inequality and a supporting hyperplane inequality to create a surrogate function with parameters separated. Thus, unconstrained signomial programming reduces to a sequence of one-dimensional minimization problems. Simple examples demonstrate that the MM algorithm derived can converge to a boundary point or to one point of a continuum of minimum points. Conditions under which the minimum point is unique or occurs in the interior of parameter space are proved for geometric programming. Convergence to an interior point occurs at a linear rate. Finally, the MM framework easily accommodates equality and inequality constraints of signomial type. For the most important special case, constrained quadratic programming, the MM algorithm involves very simple updates.  相似文献   

13.
符号几何规划的一种分解方法   总被引:1,自引:0,他引:1  
针对符号几何规划提出了一种直接的分解方法,将难于求解的符号几何规划问题等价地转化为一个非线性程度很低的可分离规划,为寻求困难度高且规模较大的符号几何规划问题的求解提供了一种方法,特别是经此方法分解后的每个子问题均易于求解,最后给出了数值实例,验证了此方法的有效性.  相似文献   

14.
Many global optimization approaches for solving signomial geometric programming problems are based on transformation techniques and piecewise linear approximations of the inverse transformations. Since using numerous break points in the linearization process leads to a significant increase in the computational burden for solving the reformulated problem, this study integrates the range reduction techniques in a global optimization algorithm for signomial geometric programming to improve computational efficiency. In the proposed algorithm, the non-convex geometric programming problem is first converted into a convex mixed-integer nonlinear programming problem by convexification and piecewise linearization techniques. Then, an optimization-based approach is used to reduce the range of each variable. Tightening variable bounds iteratively allows the proposed method to reach an approximate solution within an acceptable error by using fewer break points in the linearization process, therefore decreasing the required CPU time. Several numerical experiments are presented to demonstrate the advantages of the proposed method in terms of both computational efficiency and solution quality.  相似文献   

15.
无约束广义几何规划的一种最新算法   总被引:4,自引:0,他引:4  
1 引  言近十几年来 ,几何规划新的有效数值求解方法成果很少 ,但几何规划在工程中的应用却十分广泛 ,随着线性、二次规划和非线性规划的各种新的数值方法的出现 ,必将把几何规划推向新阶段 .本文充分利用广义几何规划的特点 ,根据目标函数的梯度及 Hessian阵具有简单的特殊表达式 ,再结合信赖域算法构造了一种特殊算法 ,每次迭代只需解一类特殊的线性方程组 ,并在相对弱的条件下证明了全局收敛性和局部二次收敛性 ,具有比采用一般非线性规划求解速度快、精度高、占用内存少等优点 .考虑如下无约束的广义几何规划问题minh(t) = mj=1cj n…  相似文献   

16.
This paper revisits an efficient procedure for solving posynomial geometric programming (GP) problems, which was initially developed by Avriel et al. The procedure, which used the concept of condensation, was embedded within an algorithm for the more general (signomial) GP problem. It is shown here that a computationally equivalent dual-based algorithm may be independently derived based on some more recent work where the GP primal-dual pair was reformulated as a set of inexact linear programs. The constraint structure of the reformulation provides insight into why the algorithm is successful in avoiding all of the computational problems traditionally associated with dual-based algorithms. Test results indicate that the algorithm can be used to successfully solve large-scale geometric programming problems on a desktop computer.  相似文献   

17.
一般广义几何规划问题的一种有效数值方法   总被引:8,自引:0,他引:8  
张可村  杨波艇 《计算数学》1994,16(2):158-169
一般广义几何规划问题的一种有效数值方法张可村,杨波艇(西安交通大学)ANEFFECTIVENUMERICALMETHODFORGENERALSIGNOMIALGEOMETRICPROGRAMMINGPROBLEMS¥ZhangKe-cun;YangB...  相似文献   

18.
This paper considers the solution of nonconvex polynomial programming problems that arise in various engineering design, network distribution, and location-allocation contexts. These problems generally have nonconvex polynomial objective functions and constraints, involving terms of mixed-sign coefficients (as in signomial geometric programs) that have rational exponents on variables. For such problems, we develop an extension of the Reformulation-Linearization Technique (RLT) to generate linear programming relaxations that are embedded within a branch-and-bound algorithm. Suitable branching or partitioning strategies are designed for which convergence to a global optimal solution is established. The procedure is illustrated using a numerical example, and several possible extensions and algorithmic enhancements are discussed.  相似文献   

19.
Signomial geometric programming (SGP) has been an interesting problem for many authors recently. Many methods have been provided for finding locally optimal solutions of SGP, but little progress has been made for global optimization of SGP. In this paper we propose a new accelerating method for global optimization algorithm of SGP using a suitable deleting technique. This technique offers a possibility to cut away a large part of the currently investigated region in which the globally optimal solution of SGP does not exist, and can be seen as an accelerating device for global optimization algorithm of SGP problem. Compared with the method of Shen and Zhang [Global optimization of signomial geometric programming using linear relaxation, Appl. Math. Comput. 150 (2004) 99–114], numerical results show that the computational efficiency is improved obviously by using this new technique in the number of iterations, the required saving list length and the execution time of the algorithm.  相似文献   

20.
Free-sign pure discrete signomial (FPDS) terms are vital to and are frequently observed in many nonlinear programming problems, such as geometric programming, generalized geometric programming, and mixed-integer non-linear programming problems. In this study, all variables in the FPDS term are discrete variables. Any improvement to techniques for linearizing FPDS term contributes significantly to the solving of nonlinear programming problems; therefore, relative techniques have continually been developed. This study develops an improved exact method to linearize a FPDS term into a set of linear programs with minimal logarithmic numbers of zero-one variables and constraints. This method is tighter than current methods. Various numerical experiments demonstrate that the proposed method is significantly more efficient than current methods, especially when the problem scale is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号