共查询到14条相似文献,搜索用时 0 毫秒
1.
Performance improvement of blue light-emitting diodes with an AlInN/GaN superlattice electron-blocking layer 下载免费PDF全文
The characteristics of a blue light-emitting diode (LED) with an AlInN/GaN superlattice (SL) electron-blocking layer (EBL) are analyzed numerically. The carrier concentrations in the quantum wells, energy band diagrams, electrostatic fields, and internal quantum efficiency are investigated. The results suggest that the LED with an AlInN/GaN SL EBL has better hole injection efficiency, lower electron leakage, and smaller electrostatic fields in the active region than the LED with a conventional rectangular AlGaN EBL or a AlGaN/ GaN SL EBL. The results also indicate that the efficiency droop is markedly improved when an AlInN/GaN SL EBL is used. 相似文献
2.
3.
Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AlGaN hole blocking layer 下载免费PDF全文
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-AlGaN hole blocking layer (HBL), and an n-AlGaN HBL with gradual Al composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AlGaN HBL with gradual Al composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conventional p-AlGaN EBL or a common n-AlGaN HBL. Meanwhile, the efficiency droop is alleviated when an n-AlGaN HBL with gradual Al composition is used. 相似文献
4.
Improved performance of InGaN light-emitting diodes with a novel sawtooth-shaped electron blocking layer 下载免费PDF全文
A sawtooth-shaped electron blocking layer is proposed to improve the performance of light-emitting diodes (LEDs). The energy band diagram, the electrostatic field in the quantum well, the carrier concentration, the electron leakage, and the internal quantum efficiency are systematically studied. The simulation results show that the LED with a sawtooth-shaped electron blocking layer possesses higher output power and a smaller efficiency droop than the LED with a conventional A1GaN electron blocking layer, which is because the electron confinement is enhanced and the hole injection efficiency is improved by the appropriately modified electron blocking layer energy band. 相似文献
5.
Performance improvement of blue InGaN light-emitting diodes with a specially designed n-AIGaN hole blocking layer 下载免费PDF全文
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used. 相似文献
6.
Performance improvement of GaN-based light-emitting diode with a p-InAlGaN hole injection layer 下载免费PDF全文
The characteristics of a blue light-emitting diode(LED)with a p-InAlGaN hole injection layer(HIL)is analyzed numerically.The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power,a reduction in current leakage and alleviation of efficiency droop.These improvements can be attributed to the p-InAlGaN serving as hole injection layers,which can alleviate the band bending induced by the polarization field,thereby improving both the hole injection efficiency and the electron blocking efficiency. 相似文献
7.
Performance enhancement of an InGaN light-emitting diode with an AlGaN/InGaN superlattice electron-blocking layer 下载免费PDF全文
The efficiency enhancement of an InGaN light-emitting diode(LED) with an AlGaN/InGaN superlattice(SL)electron-blocking layer(EBL) is studied numerically,which involves the light-current performance curve,internal quantum efficiency electrostatic field band wavefunction,energy band diagram carrier concentration,electron current density,and radiative recombination rate.The simulation results indicate that the LED with an AlGaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular AlGaN EBL or a normal AlGaN/GaN SL EBL because of the appropriately modified energy band diagram,which is favorable for the injection of holes and confinement of electrons.Additionally,the efficiency droop of the LED with an AlGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region. 相似文献
8.
Comparison of nitride-based dual-wavelength lightemitting diodes with an InAIN electron-blocking layer and with p-type doped barriers 下载免费PDF全文
The advantages of nitride-based dual-wavelength light-emitting diodes (LEDs) with an InA1N electron blocking layer (EBL) are studied. The emission spectra, carrier concentration in the quantum wells (QWs), energy band and internal quantum efficiency (IQE) are investigated. The simulation results indicate that an LED with an InA1N EBL performs better over a conventional LED with an A1GaN EBL and an LED with p-type-doped QW barriers. All of the advantages are due to the enhancement of carrier confinement and the lower electron leakage current. The simulation results also show that the efficiency droop is markedly improved and the luminous intensity is greatly enhanced when an InAlN EBL is used. 相似文献
9.
Performance improvement of GaN-based light-emitting diode with a p-InAIGaN hole injection layer 下载免费PDF全文
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency. 相似文献
10.
Enhanced performance of GaN-based light-emitting diodes with InGaN/GaN superlattice barriers 下载免费PDF全文
GaN-based multiple quantum well light-emitting diodes (LEDs) with conventional and superlattice barriers have been investigated numerically. Simulation results demonstrate using InGaN/GaN superlattices as barriers can effectively enhance performances of the GaN-Based LEDs, mainly owing to the improvement of hole injection and transport among the MQW active region. Meanwhile, the improved electron capture decreases the electron leakage and alleviates the efficiency droop. The weak polarization field induced by the superlattice structure strengthens the intensity of the emission spectrum and leads to a blue-shift relative to the conventional one. 相似文献
11.
制备了一种基于荧光聚合物共混的单发光层聚合物白光发光二极管.器件结构为铟锡氧化物/苯磺酸掺杂聚乙烯基二氧噻吩/发光层/ 1,3,5-三(N-苯基-2-苯并咪唑-2)苯41/Ba/Al,蓝光材料芴-氟化喹喔啉共聚物(PF-BPFQ5)、绿光材料苯基取代的聚对苯乙炔(P-PPV)和红光材料聚(2-甲氧基-5-(2′-乙基己氧基)-1,4-对苯乙炔)(MEH-PPV)共混为发光层.当PF-BPFQ5,P-PPV,MEH-PPV的质量比例为100∶06∶06时,获得标准的白光,色坐标为(033
关键词:
聚合物发光二极管
白光
共混 相似文献
12.
采用软件理论分析的方法对渐变型量子阱垒层厚度的InGaN双波长发光二极(LED)的载流子浓度分布、 能带结构、自发发射谱、内量子效率、发光功率及溢出电子流等进行研究.分析结果表明, 增大量子阱垒层厚度会影响空穴在各量子阱的注入情况, 对双波长LED各量子阱中空穴浓度分布的 均衡性及双波长发光光谱的调控起到一定作用,但会导致内量子效率严重下降; 而当以特定的方式从n电极到p电极方向递减渐变量子阱垒层厚度时, 活性层量子阱的溢出电子流 得到有效的控制, 双发光峰强度达到基本一致, 同时芯片的内量子效率下降得到了有效控制, 且具备大驱动电流下较好的发光特性. 相似文献
13.
We investigate the effect of a 100 nm-thick NiZn alloy (10 wt% Zn) capping layer on the thermal and electrical properties of Ag reflectors (200 nm) for flip-chip light-emitting diodes (LEDs). It is shown that the introduction of the NiZn capping layer minimizes the formation of interfacial voids and surface agglomeration. Furthermore, LEDs fabricated with the NiZn-capping-layer-combined contacts produce better output power as compared to those with the Ag only reflectors. For example, the LEDs with the 400 °C-annealed Ag/NiZn contacts give higher output power by ∼36% than those with the 400 °C-annealed Ag only contacts. X-ray photoemission spectroscopy and Auger electron spectroscopy measurements are performed to understand the improved electrical properties of the LEDs fabricated with the NiZn-capping-layer-combined Ag contacts. 相似文献
14.
Jae-Sung Lim 《Applied Surface Science》2007,253(8):3828-3833
Transparent indium-tin-oxide (ITO) anode surface was modified using O3 plasma and organic ultra-thin buffer layers were deposited on the ITO surface using 13.56 MHz rf plasma polymerization technique. A plasma polymerized methyl methacrylate (ppMMA) ultra-thin buffer layer was deposited between the ITO anode and hole transporting layer (HTL). The plasma polymerization of the buffer layer was carried out at a homemade capacitively coupled plasma (CCP) equipment. N,N′-Diphenyl-N,N′-bis(3-methylphenyl)-1,1′-diphenyl-4,4′-diamine (TPD) as HTL, Tris(8-hydroxy-quinolinato)aluminum (Alq3) as both emitting layer (EML)/electron transporting layer (ETL), and aluminum layer as cathode were deposited using thermal evaporation technique. Electroluminescence (EL) efficiency, operating voltage and stability of the organic light-emitting devices (OLEDs) were investigated in order to study the effect of the plasma surface treatment of the ITO anode and role of plasma polymerized methyl methacrylate as an organic ultra-thin buffer layer. 相似文献